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Abstract. This paper proposes an efficient load-balancing framework
based on lazy partitioning of sequential programs where a single-threaded
program is basically executed with little parallelization overhead but its
computation is divisible for efficient utilization of multiple computing
resources. Traditional fork-join multithreaded languages can be imple-
mented on the top of our framework, but our framework provides an in-
termediate abstraction layer where a new thread is created as a task only
when dynamic partitioning is requested at runtime. To divide a running
task by spawning a new task, the sequential program can have “spawn-
request handlers”, which are similar to “exception handlers”, but they
are “called” rather than used for non-local exits. The oldest available
spawn-request handler is called to obtain good load balancing, because
it tends to spawn a task with sufficient amount of work and to mini-
mize the number of task creations and transfers. The sequential program
can also have “undo-redo clauses”, which are similar to Java’s finally

clauses, but an undo-redo clause can perform necessary state recovery
(undo/backtracking) before an attempt to call an older spawn-request
handler and perform the redo (the cancellation of the undo) after the at-
tempt. By using undo-redo clauses, we can avoid undesirable copying of
temporarily-modified data (e.g., for backtrack search problems). To im-
plement the proposed constructs, our translator into an extended C lan-
guage uses “nested functions” provided by the GNU C compiler. We also
enhanced GCC to reduce allocation overhead and maintenance overhead
of nested functions. The results of preliminary performance measure-
ments on various shared-memory parallel computers exhibit near-ideal
speedups and quite low parallelization overhead.

1 Introduction

Recently we can often utilize multiple computing resources. For example, we can
use computers in the Internet, processors in a parallel computer, and simultane-
ous multi-threading units in a processor (such as Hyper-threading). For efficient
utilization of multiple computing resources, each computing resource should al-
ways have exactly one task: both poor parallelism (a lower utilization rate) and
excessive parallelism (higher managing overhead) should be avoided.

To realize efficient dynamic load balancing by transferring tasks among com-
puting resources in fine-grained parallel computing such as search problems, load



balancing schemes which lazily create and extract a task by splitting the present
running task, such as Lazy Task Creation (LTC)[1], are effective. Here we use the
term “task” to refer to a schedulable unit of work which is also transferable to
other computing resources. In the case of multithreaded languages, a task may
internally contain and manage multiple language-level threads. By extracting a
task around the root of the invocation tree as much as possible, each computing
resource can have sufficient amount of work with the almost minimum number
of task transfers.

The rest of this paper is organized as follows. We discuss multithreaded
languages in Sect. 2. In Sect. 3, we propose a load-balancing framework based
on lazy partitioning of sequential programs where a single-threaded program
is basically executed with little parallelization overhead but its computation is
divisible. Traditional fork-join multithreaded languages can be implemented on
the top of our framework, but we can employ our framework directly if we prefer
the speed rather than the higher abstraction. Section 4 proposes the implemen-
tation of our framework: we show that we can generate an extended C program
with LTC-based load balancing where callers’ variables are accessed by using
nested functions provided by the GNU C compiler[2, 3]. We also show that we
can perform backtracking by using nested functions. Here “backtracking” means
not only to backtrack to a point where a new choice for the search can be
made but also to undo the side effect of the previous examined choices as in
a sequential backtrack search. In addition, we propose a semantical separation
of nested functions from normal top-level functions, which enables a significant
performance improvement. Section 5 shows the measured performance on shared-
memory parallel computers. The results exhibit near-ideal speedups and quite
low parallelization overhead.

2 Multithreaded Languages and Parallel Execution

High-level programming languages for parallel processing are quite useful to de-
velop reliable, reusable and efficient applications on various parallel architecture
including shared-memory architecture and distributed-memory architecture. In
multithreaded languages, every (mostly) independent computation can be natu-
rally expressed as a thread. There are various multithreaded languages which are
based on sequential languages and have additional constructs for multithread-
ing: Multilisp[4] is a future-based multithreaded Scheme language, Cilk[5] is a
multithreaded C language and OPA[6, 7] is a multithreaded Java language. In
these languages, parallel programs are written with threads, expecting that the
language systems provide automatic load balancing.

In multithreaded languages, threads can be allocated to available computing
resources. However, multithreaded programs cost parallelization overhead com-
pared to sequential (single-threaded) programs. To reduce the parallelization
overhead, multiple threads allocated to a particular computing resource should
statically be fused into a single thread. But the static allocation of threads for
efficient utilization of heterogeneous (and dynamic) computing resources is quite
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{

int x = spawn fib(n-2);

int y = fib(n-1);

join:

z = x + y;

}

{

int s = 0;

for(i=0;i<n;i++)

if(test(i))

s += spawn search(i);

join:

z = s;

}

Fig. 1. Fork-join multithreaded code examples.

difficult. In addition, the amount of work each thread has is not always statically
predictable. Thus the static partitioning of parallel programs has only limited ef-
ficiency, and the dynamic load balancing with dynamic (re)allocation of present
threads is required.

2.1 Scheduling and Load Balancing

A multithreaded program incurs the overhead of thread creation/termination
and that of synchronization, even when there are enough number of threads to
utilize available computing resources. Indeed, an important goal of various so-
phisticated implementation techniques of multithreaded languages is the removal
of the overhead (e.g., by using specialized code). One of the best implementation
techniques of multithreaded languages is LTC, which is originally proposed for
Multilisp’s future construct. In LTC, a newly created thread is directly and
immediately executed like a usual call while (the continuation of) the oldest
thread in the computing resource may be stolen by other idle computing re-
sources. Usually, the idle computing resource (thief ) randomly selects another
computing resource (victim) for stealing a task.

Fork-join style multithreaded computation is an important class of paral-
lelism. Let us focus on that style below. Figure 1 illustrates fork-join multi-
threaded code examples in multithreaded C. The left one is based on OPA[7];
the first function call is executed by a newly created child thread and the parent
thread can execute the second function call in parallel, then after the join of
the child thread it uses the results. The right one is based on Cilk[5]; the parent
thread repeatedly creates a child thread if the condition is satisfied, then it waits
for the join of all created child threads. If a parent thread never has to wait for
some conditions other than the join of child threads (this is true in many cases),
suspending the parent thread at any time to schedule child threads is permitted;
i.e., the parent thread can call a child thread sequentially.

There are roughly two types of scheduling strategies for efficient multithreaded
execution: (1) Child-first: at fork point, the computing resource executes the
child thread prior to the parent thread and makes the parent thread stealable
for other computing resources, and resumes the parent thread if it has not been
stolen after the completion of the child thread. (2) Parent-first: at fork point,
the computing resource executes the parent thread prior to the child thread and
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makes the child thread stealable for other computing resources, and calls the
child thread if it has not been stolen at the join point of the parent thread.
Cilk[8, 5, 9], LTC[1, 10], StackThreads/MP[11] and OPA[7] belong to the for-
mer category, and WorkCrews[12], Lazy RPC[13], FJTask[14, 15] and Leapfrog-
ging[16] belong to the latter category. Note that some of these[12, 14, 15] are
multithreading frameworks rather than multithreaded languages, and some of
these [1, 10, 11, 7, 16] are used in more general multithreading parallelism than
the well-structured fork-join parallelism.

There are some variations of the child-first scheduling strategy. Instead of
stealing the whole parent thread, a thief can steal the parent thread’s partial
continuation[17–19] before the join point. For example, in the right program of
Fig. 1, when the parent thread spawns search(i), the partial continuation of
the parent thread is identical to the execution of:

“i++; for(;i<n;i++) if(test(i)) s += spawn search(i);”.

A thief can also steal only a child thread which will be created during the exe-
cution of the partial continuation. For example, if test(n-1) is true, the thief
can steal the child thread for search(n-1). These two variations of schedul-
ing strategies can be realized on the top of our load-balancing framework. Our
framework also supports the parent-first strategy.

Another subtle issue is what a computing resource should do when the current
thread is waiting for the join of the previously stolen task (which is the child
thread or the partial continuation of the parent thread) running on the another
computing resource. If the computing resource steals a task from a randomly
selected victim and calls1 it to hide the waiting latency, the maximum stack size
might be unexpectedly large[16]. As was stated in [13], this may not be a serious
problem, but a strategy to guarantee the maximum stack size is proposed in
Leapfrogging[16], where the computing resource waiting for the join of the stolen
task steals back a task from the computing resource that previously stole the
stolen task. We employs this idea of Leapfrogging in our framework.

2.2 Locality and Sharing Problems

In traditional multithreaded languages, each thread must use its own working
space to avoid interference between threads. This degrades reference locality by
increasing the working set size. For example, on 1GHz Pentium-III, a sequen-
tial program which calculates a 16-dimensional vector Σ1000000

i=1 inpvec[i] by
using a single accumulation vector runs about 12% faster than by using some of
inpvec[i] as accumulation vectors to avoid interference between threads. This
does not change the number of operations but simply changes the working spaces
for multiple threads; i.e., reference locality has an effect on the performance. If
we do not want to destroy the value of inpvec[i], intermediate accumulation
vectors should be allocated and merging of intermediate results is necessary. In
1 Since we limit the expressed parallelism to the fork-join style, the transfered task

can be executed with the stack of the suspended task[12–15].
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Systems: Languages:
High-level multithread application

High-level compiler (translator)

C compiler/runtime

Operating system

High-level multithreaded language
C language
Assembly (machine) language (ABI)

Fig. 2. Abstraction layers with C compiler.

Systems: Languages:
High-level multithread application

High-level compiler (translator)

Load-balancing framework

GNU C compiler/runtime

Operating system

High-level multithreaded language
Extended C with spawn-request handlers
Extended C with nested functions
Assembly (machine) language (ABI)

Fig. 3. Abstraction layers with load-balancing framework.

this case, the sequential program using a single accumulation vector runs about
29% faster than using intermediate accumulation vectors.

In traditional multithreaded languages, threads may share a data structure
such as an array if the data structure is “read only”, but they cannot share the
array if the array is modified by threads even if modification is performed only
temporarily. So, undesirable copying of temporarily-modified data is necessary.
In sequential programs, copying of temporarily-modified data can be avoided
if the subsequent subprogram observes the recovered state (e.g., for backtrack
search problems). This technique promotes further reuse/sharing of the working
space in sequential programs. For example, on 1GHz Pentium-III, a sequential
program which finds all possible solutions of the Pentomino puzzle by reusing a
single data structure for the current configuration runs about 104% faster than
copying the data structure. Note that the “real” modification can be avoided by
using a thread-local “virtual” modification history, but the access time to such
an array will no longer be a constant but proportional to the history size.

3 Load-Balancing Framework Based on Lazy Partitioning

Multithreaded languages can be implemented on the top of assembly languages
as in [1]. However, an appropriate intermediate language and its system is desir-
able for portability. In Cilk[5] and OPA[7] implementations, the C language is
used as an intermediate language as in Fig. 2. The high-level compilers have to
provide the functionality of load balancing since the C compiler does not provide
it.

We propose an efficient load-balancing framework based on lazy partitioning
of sequential programs where a single-threaded program is basically executed
with little parallelization overhead but its computation is divisible for efficient
utilization of multiple computing resources. Traditional fork-join multithreaded
languages can be implemented on the top of our framework, but our framework
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provides an intermediate abstraction layer for load-balancing (Fig. 3). In addi-
tion, we can employ our framework directly if we prefer the speed rather than the
higher abstraction. We will compare our intermediate-level framework language
with the high-level multithreaded languages.

In this section, we present the interface and functionality of our load-balancing
framework. The implementation of our framework will be presented in Sect. 4. In
our framework, a new thread is created as a task only when dynamic partitioning
is requested at runtime.

Single-threaded execution

After lazy (dynamic) partitioning

A runtime task request
time

For an idle computing resouce

time

Fig. 4. Lazy partitioning of sequential programs.

Figure 4 illustrates the single-threaded execution and the parallel execution
after the lazy (dynamic) partitioning. The sequential execution enjoys smaller
working set size and reuse/sharing of the working space just before the par-
titioning; nevertheless the parallel execution after the division is the same as
that of multithreaded languages. To realize this partitioning, our language has
“spawn-request handlers” and “undo-redo clauses”.

To divide a running task by spawning a new task, a sequential program can
have “spawn-request handlers”, syntactically denoted by

“do {body} handle_spawn_req(req){spawn-attempt}”,

which are similar to “exception handlers” but are “called” rather than used for
non-local exits. When a runtime task request is received during the execution
of body, the oldest available spawn-request handler is called to obtain good load
balancing, because it tends to spawn a task with sufficient amount of work and
to minimize the number of task creations and transfers. If the oldest spawn-
request handler does not spawn a task, the second oldest spawn-request handler
is invoked; this chain of handler invocations is repeated until a task is spawned
or all spawn-request handlers are invoked. For example, the two spawn-request
handlers in Fig. 5 are invoked in the displayed order.

In traditional multithreaded languages, each thread must use its own working
space to avoid interference between threads. Since the spawn-request handler
or the spawned task can assign a working space on demand, our framework
improves reference locality by reducing the working set size. and obtains better
performance.

6



do{
do{

may receive spawn request (0.)
}handle_spawn_req(req){ called if task has not been spawned (2.) }

}handle_spawn_req(req){ called (1.) }

Fig. 5. The invocation order of spawn-request handlers.

do{
do{
do{
do{

may receive spawn request (0.)
}undo_redo{

undo (1.)
try_to_spawn;
redo (6.)

}
}handle_spawn_req(req){ called if task has not been spawned (5.) }

}undo_redo{
undo (2.)
try_to_spawn;
redo (4.)

}
}handle_spawn_req(req){ called (3.) }

Fig. 6. The invocation order of undo-redo clauses.

The sequential program can also have “undo-redo clauses”, syntactically de-
noted by

“do {body} undo redo {undo try_to_spawn; redo}”,

which are similar to Java’s try-finally or Scheme’s dynamic-wind: an undo-
redo clause can perform necessary state recovery (undo/backtracking) before an
attempt to call an older spawn-request handler and perform the redo (the can-
cellation of the undo) after the attempt. For example, the spawn-request handler
and the undo-redo clauses in Fig. 6 are invoked in the displayed order. By us-
ing undo-redo clauses, we can avoid undesirable copying of temporarily-modified
data (e.g., for backtrack search problems) and promote further reuse/sharing of
the working space.

The spawn-request handlers and undo-redo clauses are dynamically scoped
like exception handlers.

3.1 Examples

We will introduce two examples of tree-recursive fine-grained parallel computing;
these applications are used to explain the details of our proposal in the following
sections. These are also used for performance measurements.

The first example is to recursively compute the n-th term of Fibonacci se-
quence defined as follows:

fib(1) = fib(2) = 1
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fib(n) = fib(n − 1) + fib(n − 2) for n > 2

Of course, this computation has no practical meaning, but this is a simple tree-
recursive irregular computation and is very useful for measurements of overhead
(e.g., overhead of function calls and/or overhead of parallelization). Since each
function has few actual work, the measured overhead well represents the worst
case overhead for similar tree-recursive computations.

int fib(int n)
{
if (n <= 2)
return 1;

else
{
int s = 0;
int x = fib(n-2) !! { s += fib(n-1); }
return s + x;

}
}

Fig. 7. Multithreaded Fibonacci computations.

Figure 7 presents multithreaded Fibonacci computations based on Lazy RPC[13].
This high-level code can be translated onto our framework as in Fig. 8. The
program is basically a single-threaded program except for the spawn-request
handler which specifies the way how to spawn (SET_TASK and SEND_TASK) a
new thread/task by accessing variables xt and n. Variable UNSETP(xt) indicates
whether or not the computation has proceeded to the second recursive call. The
second recursive call is usually called sequentially, but it may become a new
thread/task to respond a task request sent from some idle computing resource.
In this program, a task using int value and producing int value is explicitly
described. Such information on the stolen task can be kept in xt; thus, it is
possible to recover from the fault of the computing resource that stole the task
if the fault can be detected at “WAIT_RESULT(xt)”.

The second example is a search problem to find all possible solutions of the
Pentomino puzzle. A pentomino consists of five equal-sized squares attached
edge-to-edge to form some shape. There are twelve possible pentominos that
can be formed in this way. The Pentomino puzzle is to fill the 6×10 rectangular
board with the twelve pentominos. Of course, this problem is only a puzzle, but
it represents many similar search problems.

All possible solutions of this puzzle can be computed by “backtrack search”.
backtrack search can be viewed as search through a tree of partial solutions,
called backtrack search tree, where the root represents an empty solution, the
children of a tree node represent partial solutions extended by possible one-step
choices, and a leaf represents either a solution or a partial solution with no
further extension. In sequential backtrack search, the search tree is traversed in
a depth-first manner. Typically, only one partial solution is kept in memory and
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int fib(int n)
{
if (n <= 2)
return 1;

else
{
int s = 0;
int x;
TASK_DATA(int,int) xt = INIT_TASK_DATA(int, int);
do {
s += fib(n-1);

} handle_spawn_req(req) {
if(UNSETP(xt))
{
SET_TASK(xt, fib, n-2);
SEND_TASK(req, xt);

}
}
if (UNSETP(xt))
x = fib(n-2);

else
{
WAIT_RESULT(xt);
x = xt.result;

}
return s + x;

}
}

Fig. 8. Fibonacci computations with lazy partitioning.

one-step extension updates the partial solution; backtracking must undo the side
effect of the previous examined choices. In the Pentomino puzzle, a piece is put
at the next available position by one-step extension and the piece is removed by
backtracking.

However, this “in-place” update/undo assumes that a single processor solely
performs these operations; it is difficult to apply the same scheme to parallel
backtrack search. Thus, when an partial solution is extended for parallel back-
track search, the extended partial solution must be kept in different memory to
keep the original partial solution unchanged. This incurs a significant copying
overhead.

Figure 9 shows a backtrack search algorithm for the Pentomino puzzle us-
ing in-place updating/restoring of partial solutions. The call to a spawn-request
handler also involves the backtracking (and undoing side effects, i.e., removing
the pieces for the Pentomino example) along the search tree. In traditional mul-
tithreaded languages, each partial solution of the backtrack search tree must
always be copied for unsharing them among multiple threads. In the proposed
language, copying is necessary only when dynamic partitioning is performed.
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private int a[12]; // piece
private int b[70]; // board

int try_piece(int k, int i){
variables decls
for(d=0;d<n;d++){

if (! room available?) goto Ln;
put the piece
do {

find the first empty location in kk
s += search(kk); // recursive search

} undo_redo {
remove the piece // backtrack
try_to_spawn;
put the piece // cancel backtrack

}
remove the piece // backtrack

Ln:
continue;

}
return s;

}

int search(int k){
variables decls
if(found) return 1;
if(prunable) return 0;
while (i<si) {

int ii = i++;
if (a[ii] == 0)
do {
s += try_piece(k, ii);

} handle_spawn_req(req) {
adjust si, copy a and b, and spawn try_piece(k,si)

}
}
while (i<12) {

int ii = i++;
WAIT_RESULT(r[ii]);
s += r[ii].result;

}
return s;

}

Fig. 9. Lazy partitioning with an undo-redo clause.
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4 Implementation

This section proposes the implementation techniques of our load-balancing frame-
work. As was shown in Fig. 3, our load-balancing framework is implemented on
the top of an extended C language with nested functions which is provided by
the GNU C compiler.

4.1 An Extended C Language with Nested Functions

Compilers (translators) for multithreaded languages generate low-level code. In
the original LTC[1], assembly code is generated to directly manipulate the exe-
cution stack. Both translators for Cilk[5] and OPA[7] generate C code. Since it
is illegal and not portable for C code to directly access the execution stack, the
Cilk/OPA translators generate two versions (fast/slow) of code; the fast version
code saves values of live variables in a heap-allocated frame upon call (in the case
of Cilk) or return (in the case of OPA) so that the slow version code can continue
the rest of computation based on the heap-allocated saved continuation.

In the conventional C language, once a processor calls a function, the callee
cannot (directly) access the caller’s local variables. They are sleeping until the
return to the caller’s function. Thus the processor cannot (without pointers,
which interfere many compiler optimization techniques) refer to the important
and fundamental information the original call-sites have.

Assembly languages are very powerful but machine-dependent, while C lan-
guage is (almost) machine-independent but lacks an ability to access the variables
slept in the execution stack. This problem motivates researchers to develop new
powerful machine-independent intermediate languages, such as C-- [20, 21]. C--
has an ability to access the variables slept in the execution stack by using “stack
walking” although its primary goal seems to be the language-level support of
exception handling.

Recently, we found that nested functions can be used for a processor to legally
refer to the contents (i.e., variables’ values) of its execution stack. This is useful
in parallel processing, since multiple processors can interact with each other
based on the fundamental and important information in the execution stacks.
Furthermore, each processor can change its prospective behavior after several
returns by modifying the values in its execution stack. the GNU C Compiler
(GCC)[3] provides such nested functions [2] as an extension to C. We expect
that the GCC’s extended C with nested functions can also be used as a powerful
machine-independent intermediate language.

In GCC, a “nested function” is a function defined within another (nested or
top-level) function. Nested function definitions are permitted in the places where
variable definitions are allowed; that is, in any block, before the first statement in
the block. The name of the nested function is local to the block. A nested function
can access the lexically-scoped variables in the allocation-time environment and
its pointer can be used as a function pointer to indirectly call the closure (that is,
a pair of the nested function and its environment). For example, in Fig. 10, when
h indirectly calls the function g, it can access parameter x and local variable x
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int f(int x) {
int y = x * x;
int g(int z) { return x + y + z; }
return h(g, 0);

}

Fig. 10. Nested functions.

slept in f’s frame. A unique closure is (logically) created every time the control
arrives at the definition of the nested function in the same way as allocations of
auto variables or auto arrays. Since a closure is stack-allocated, the pointer to
a closure cannot be used after the exit of the block where the nested function is
defined.

4.2 Lazy Backtracking Task Creation: a Translator into an
Extended C Language

To implement the proposed constructs, the programs on our load balancing
framework are translated into an extended C language with nested functions. We
call the implementation/translation techniques Lazy Backtracking Task Creation
(LBTC). LBTC has the following features:

– LBTC is based on message passing[10]; that is, employing a polling method.
– LBTC only supports well-structured fork-join parallelism and a task is cre-

ated to process a (sub)computation in fork-join style parallel computations
as in WorkCrews[12], Lazy RPC[13] and FJTask[14, 15].

– When a (sub)computation is not stolen at the join point, the computation
is executed in an inlined manner.

– LBTC uses no (de)queue of tasks or computations: when a processor is re-
quested of a task, it calls a nested function which calls an older nested
function in a nested manner to extract a task nearest to the stack bottom.
The lack of task queues indicates that LBTC has remarkable laziness.

– When a processor become idle with an empty stack, it randomly chooses a
victim processor to steal a task and sends a task request and waits for a
reply.

– When a (sub)computation has been stolen but not yet finished, the pro-
cessor tries to steal back a task from the processor that has stolen the
(sub)computation. In this way, the maximum stack size can be guaranteed
as in Leapfrogging[16].

A task steal proceeds as follows (see Fig. 11): (A) When a victim processor
receives a task request (Fig. 11:1), it backtracks by calling nested functions in a
nested manner and it creates and transfers a task (Fig. 11:2), and it cancels the
backtracking to resume computation. When it creates a task, it also modifies the
caller’s variable so that it will wait for the result of the stolen task (Fig. 11:3).

By translating the Fibonacci program shown in Fig. 8, we obtain the main
part of the Fibonacci program shown in Fig. 12. “xt_unsetp = 1” means that
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BackTrack

Create a Task

Cancel
BackTrack

1: Request

2: Task

3: Result

StackStack

processor-local
inter-function
variables

helper

Fig. 11. Proposed task steal protocol.

there is one thread candidate for stealing (by other processors) or inlining (by
the current processor). bk is the nested function and its address is passed upon
calls. First, bk calls the older nested function passed via parameter bkf, then
tries to create a task if bkf or deeper nested functions have not made a task yet
(if ret is 0). POLL checks if a request is available and, if so, starts calling the
nested function. If the parent computation reaches the join point and notices the
child computation has been stolen, it tries to steal back a task from the processor
which has stolen the child computation.

For the parallel backtrack search, extracting a task also involves the back-
tracking (and undoing side effects, i.e., removing the pieces for the Pentomino
example) along the search tree. The compilation of undo-redo clauses is straight-
forward; the clause is implemented by a nested function and try_to_spawn;
simply calls the older nested function.

4.3 An Extended C Compiler

We propose a semantical separation of nested functions from normal top-level
functions, which enables a significant performance improvement.

GCC implements taking the address of a nested function using a technique
called “trampolines”[2]. Trampolines are code fragments generated on the stack
at runtime to indirectly enter the nested function with a necessary environment.
The runtime code generation is performed for the allocation of the nested func-
tion. If we can distinguish a nested function from normal top-level functions, we
can implement its closure with a stack-allocated pair of pointers for the nested
function and the environment. By using a stack-allocated pointer pair instead
of a dynamically-generated code fragment, the allocation overhead of nested
functions can be reduced.

We enhanced GCC-3.2 (with a patch of 700 lines) to involve new entities
called closures other than functions to eliminate “trampolines”. This can be im-
plemented by extending the syntax with a new keyword closure and modifying
the RTL generation phase[3].
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int fib(proc_env pr,
int (*bkf)(req_buf_t *), int n){

int ret = 1;
int s, x;
void **saved_req_port_p;
int result_buf;
int result_port;
int xt_unsetp;
int bk(req_buf_t *req_buf_p){
/* a nested call of the older nested function */
if(ret) ret = bkf(req_buf_p);
if(ret) return 1; /* a task has been created at an older caller */
if(xt_unsetp){
task_buf_t *tbp =req_buf_p->task_buf_p;
int *tpp =req_buf_p->task_port_p;
xt_unsetp = 0;
/* save info for "request back" */
saved_req_port_p =req_buf_p->req_port_p;
/* result not available yet */
result_port = 0;
/* put a task */
tbp->f = tf_fib;
tbp->sender = pr->myid;
tbp->a.t1.result_buf_p = &result_buf;
tbp->a.t1.result_port_p = &result_port;
tbp->a.t1.n = n-2;
/* transfer the task */
finish_write_before_write();
atomic_write_int(*tpp, 1);
return 1;

}
return 0;

}
if(n <= 2) return 1;
s = 0;
xt_unsetp = 1;
POLL(pr->req_port, bk);
s += fib(pr, bk, n-1);
if(xt_unsetp){
x = fib(pr, bkf, n-2);

}else{
/* wait for thread completion */
while(atomic_read_int(result_port) == 0)
/* request back a task and run*/
steal_run_task(pr,saved_req_port_p,1);

start_read_after_read();
x = result_buf;

}
return s + x;

}

Fig. 12. compiled code for Fibonacci.
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Fig. 13. Record of task transfers by the Pentomino program on 8 processors.

We also enhanced GCC-3.2 (with a patch of 1500 lines) to involve new entities
called L-closures other than closures to eliminate maintenance overhead of nested
functions, which enables variables shared among different nesting-level functions
to get callee-save registers as long as the L-closures is not invoked. This can be
implemented by extending the syntax, modifying the RTL generation phase and
prologue/epilogue generation phase, and adding small runtime assembly code.
The details of the implementation of L-closures will be reported by a separate
paper.

5 Preliminary Performance Measurements

We collected the results of performance measurements with fib(36) on various
shared-memory parallel computers:

– Sun Ultra Enterprise 10000 (250MHz UltraSPARC-II, 1MB L2 Cache, 64CPUs)
Solaris 7, gcc 2.95.2 -O2 -mcpu=ultrasparc

– IBM RS/6000 SP (332MHz PowerPC 604e instruction 32KB/data 32KB L1
cache, 0.25MB L2 cache, 4CPUs) AIX Version 4.3,
gcc 2.95.2 -O2 -mcpu=powerpc

– PC (1GHz Pentium-III, 2CPUs), Solaris 8, gcc 2.8.1 -O2

We also collected the results of performance measurements with the Pentomino
application on the shared-memory parallel computers.

First, all applications achieved near-ideal speedups; for example, 30.9 times
speedup with 32 CPUs and 45.4 times speedup with 48 CPUs were obtained
with the Pentomino application on Ultra Enterprise 10000, (we think that some
dropping was caused by pruning.) and nearer-ideal speedups were obtained for
all other cases. Figure 13 shows the task transfers between 8 processors with
the Pentomino program. The horizontal axis is time and the vertical axis is for
processor numbers. help represents the case where an idle processor with an
empty stack successfully steals a task. takeback represents the case where an
waiting processor with a non-empty stack successfully steals back a task. We
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can see the number of task transfers is moderate while good load balancing is
obtained.

Next, we can focus on the overhead of parallelization. The elapsed time of a
sequential C program and that of the parallel program on a single PE are shown
in Table 1 and Table 2. The relative time to the sequential C program is shown
in parenthesis. Since Fibonacci programs include few actual computation, the
overhead of parallelization are emphasized. We think the main overhead is for
allocation of nested functions with “trampolines”. SPARC needs to flush some
instruction cache for runtime-generated trampolines code. Note that PowerPC-
based AIX does not use “trampolines”; so the overhead is smaller than other
machine configurations. In Pentomino programs, we think the main overhead is
for maintenance of nested functions. Because nested functions cannot directly
access the register values of the enclosing functions, the enclosing functions need
to save shared values in the stack. Since Pentium has only a small number of
registers, the maintenance overhead is smaller than RISC processors.

Table 1. Single PE execution time compared to sequential C (Fibonacci).

(sec)

C LBTC

SPARC 2.36 7.88 (3.33)

PowerPC 1.94 3.52 (1.81)

Pentium 0.537 1.20 (2.24)

Table 2. Single PE execution time compared to sequential C (Pentomino).

(sec)

C LBTC

SPARC 14.4 23.0 (1.60)

PowerPC 9.41 12.4 (1.32)

Pentium 3.76 4.61 (1.23)

5.1 Performance Enhancement and Comparison

In the following, the results on the SPARC are measured on 750MHz Ultra-
SPARC-III. Table 3 and Table 4 show the results of GCC enhancement for
eliminating “trampolines” by using “closures” and “L-closures”. The tables also
present the measured performance of Cilk 5.3.2[8].

In the case of SPARC, we obtained significant overhead reduction by us-
ing “closures”; that is, Fibonacci’s overhead of 334% is reduced to 61%. Note
that this overhead includes not only allocations (plus maintenance) of nested
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functions but also polling checks of task requests. By using “L-closures”, the
overhead is reduced to 20%. The results show that our framework with “clo-
sures” or “L-closures” is fairly faster than Cilk’s multithread implementation,
and the speed of our framework using “L-closures” is almost comparable to the
sequential execution.

By using undo-redo clauses, we can avoid copying overhead of temporarily-
modified data. On Pentium, the “closure” program for Pentomino using undo-
redo clauses runs about 87% faster than using copying. In Table 4, “Cilk1”
incurs the copying overhead. “Cilk2” also incurs copying overhead between par-
ent and child threads, but it partly reuses the recovered temporarily-modified
data among sibling threads if the parent ensures all child threads are joined,
which can be inspected via SYNCHED pseudo variable[8].

Table 3. Performance Enhancement (Fibonacci).

(sec)

C LBTC closure L-closure Cilk

SPARC 0.80 3.47 (4.34) 1.29 (1.61) 0.96 (1.20) 3.27 (4.08)

Pentium 0.50 1.07 (2.16) 0.95 (1.91) 0.80 (1.62) 2.52 (5.09)

Table 4. Performance Enhancement (Pentomino).

(sec)

C LBTC closure L-closure Cilk1 Cilk2

SPARC 4.47 8.09 (1.81) 6.58 (1.47) 4.85 (1.09) 18.2 (4.08) 8.96 (2.01)

Pentium 3.68 4.36 (1.19) 4.28 (1.16) 3.90 (1.06) 9.94 (2.70) 7.19 (1.95)

6 Discussion

As was shown in Fig. 3, our load-balancing framework provides lower abstraction
layer than traditional multithreaded languages. For example, our program in
Fig. 8 gives more details of its execution than multithreaded program in Fig. 7,
but the description of our program can be troublesome. So, if the translation
from high-level multithreaded languages is possible, it will be preferable in most
cases and the role of our framework is simply the support of the multithreaded
language implementation.

In some cases, however, it may be preferable employing our framework di-
rectly:

– Since a single-threaded program is executed basically, debugging (tracing
execution and monitoring spawn status) is easier than multithreaded lan-
guages.
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– Since the spawn-request handler can package all necessary data in the new
task, load balancing among distributed computers can easily be supported.
By contrast, shared-memory is usually assumed in multithreaded languages.
Moreover, by saving the packages at victims, it is possible to recover from
the faults of thieves.

– To parallelize a sequential program, a working space for each thread must
be considered in multithreaded languages. By contrast, Consideration on
the interference between the present task and spawned task is enough for
lazy partitioning. Our framework improves reference locality by reducing
the working set size. Moreover, by using undo-redo clauses, we can avoid
undesirable copying of temporarily-modified data.

7 Conclusion

This paper proposes an efficient load-balancing framework based on lazy par-
titioning of sequential programs where a single-threaded program is basically
executed with little parallelization overhead but its computation is divisible for
efficient utilization of multiple computing resources.

Our implementation of the dynamic load balancing framework, lazy back-
tracking task creation (LBTC), uses nested functions to backtrack to a point
where a task for other computing resources can be created and to temporarily
undo the side effect of the running calls as in a sequential backtrack search.

Since LBTC has remarkable laziness, its performance is very close to that
of the usual sequential programs, except for the overhead of allocating nested
functions. The results of performance measurements on various shared-memory
parallel computers were shown in this paper, exhibiting near-ideal speedups and
quite low parallelization overhead.

The nested functions are provided by the GCC using a technique called
“trampolines”[2]. We also enhanced GCC to eliminate “trampolines”; this re-
duced the overhead of allocating nested functions significantly and we obtained
less than 92% parallelization overhead which include allocation and maintenance
of nested functions and polling of task requests. We also enhanced GCC to re-
duce the maintenance overhead of nested functions. As a result, we obtained less
than 63% parallelization overhead in the cases including the case where the Cilk
5.3.2 implementation incurs about 400% parallelization overhead.
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