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Abstract. We propose a new language concept called “L-closures” for a
running program to legitimately inspect/modify the contents of its execu-
tion stack. L-closures are lightweight lexical closures created by evaluat-
ing nested function definitions. A lexical closure can access the lexically-
scoped variables in the creation-time environment and indirect calls to
it provide legitimate stack access. By using an intermediate language
extended with L-closures in high-level compilers, high-level services such
as garbage collection, check-pointing, multithreading and load balancing
can be implemented elegantly and efficiently. Each variable accessed by
an L-closure uses private and shared locations for giving the private loca-
tion a chance to get a register. Operations to keep coherency with shared
locations as well as operations to initialize L-closures are delayed until
an L-closure is actually invoked. Because most high-level services create
L-closures very frequently but call them infrequently (e.g., to scan roots
in garbage collection), the total overhead can be reduced significantly.
Since the GNU C compiler provides nested functions, we enhanced GCC
at relatively low implementation costs. The results of performance mea-
surements exhibit quite low costs of creating and maintaining L-closures.

1 Introduction

Implementing sophisticated machine code generators for a variety of platforms
is not easy work. Therefore, many compiler writers for high-level languages use
C as an almost portable and machine-independent intermediate language; that
is, they write only translators from high-level languages into C.

Most compiled C programs use execution stacks for efficiency. Upon a func-
tion call, a stack frame is allocated not only for parameters and local vari-
ables of the function but also for the return address, the previous frame pointer,
the callee-save registers and alloca-ed spaces. Efficient support for some high-
level run-time services (such as garbage collection, self-debugging, stack-tracing,
check-pointing, migration, continuations, multi-threading and/or load balanc-
ing) requires inspecting/modifying the contents of execution stacks. In C, how-
ever, once a function is called, the callee cannot efficiently access the caller’s local
variables. Some local variables may have the values in callee-save registers, and
pointer -based accesses interfere with many compiler optimization techniques. In
addition, the stack frame layout is machine-dependent and direct stack manipu-
lation by the running C program via forged pointers is illegal in essence, because
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the data of stack frames are not application-level data (values) but meta-level
data for execution. Illegal access will also open security issues.

For example, to implement garbage collection (GC), the collector needs to be
able to find all roots, each of which holds a reference to an object in the garbage-
collected heap. In C, a caller’s pointer variable may hold an object reference, but
it may be sleeping in the execution stack. Even when using direct stack manip-
ulation, it is difficult for the collector to distinguish roots from other elements
in the stack. Stack maps may be used, but they are not inherent C data and
need special compiler support. For this reason, conservative collectors[1] are usu-
ally used with some limitations. When a copying collector is used to implement
GC, it needs to be able to accurately scan all roots since the objects are moved
between semi-spaces and all root pointers should refer to the new locations of
objects. Accurate copying collection can be performed by using translation tech-
niques based on “structure and pointer”[2, 3], but translating local variables into
structure fields invalidates many compiler optimization techniques.

This problem motivates researchers to develop new powerful and portable
intermediate languages, such as C--[4, 5]. C-- is a portable assembly language
(lower-level than C) but it has the ability to access the variables sleeping in the
execution stack by using the C-- runtime system to perform “stack walk”. Thus,
C-- can be used as an intermediate language to implement high-level services
such as garbage collection.

This paper proposes yet another intermediate language, which is an extended
C language with a new language concept called “L-closures” for a running pro-
gram to legitimately inspect/modify the contents of its execution stack (i.e.,
the values of data structures and variables). L-closures are lightweight lexical
closures created by evaluating nested function definitions. A lexical closure can
access the lexically-scoped variables in the creation-time environment and indi-
rect calls to it provide legitimate stack access. Compared to C--, our approach
more elegantly supports high-level services, and needs quite low implementation
costs by reusing the existing compiler modules and related tools such as linkers.

The rest of this paper is organized as follows: Section 2 presents our motivat-
ing example. In Sect. 3, we show the design of the proposed language features
(closures and L-closures), where we propose a semantical separation of nested
functions from ordinary top-level functions. Section 4 proposes our implementa-
tion model for L-closures. Section 5 presents our current implementation based
on GCC. The results of performance measurement are discussed in Sect. 6. The
results exhibit quite low costs of creating and maintaining L-closures. Section 7
discusses the costs and applications of L-closures together with the related work,
and shows that many high-level services can be implemented by translating into
the extended C language.

2 A Motivating Example

Let us consider a high-level program which recursively traverses binary tree
nodes and creates an associative list with the corresponding search data. Such a
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Alist *bin2list(Bintree *x, Alist *rest){
Alist *a = 0; KVpair *kv = 0;
if(x->right) rest = bin2list(x->right, rest);
kv = getmem(&KVpair_d); /* allocation */
kv->key = x->key; kv->val = x->val;
a = getmem(&Alist_d); /* allocation */
a->kv = kv; a->cdr = rest;
rest = a;
if(x->left) rest = bin2list(x->left, rest);
return rest;

}

Fig. 1. A motivating example: tree-to-list conversion

typedef void *(*move_f)(void *);

/* scan0 is an L-closure pointer. */
Alist *bin2list(lightweight void (*scan0)(move_f),

Bintree *x, Alist *rest){
Alist *a = 0; KVpair *kv = 0;
lightweight void scan1(move_f mv){ /* create L-closure */
x = mv(x); rest = mv(rest); /* scan roots */
a = mv(a); kv = mv(kv); /* scan roots */
scan0(mv); /* scan older roots */

} /* pass pointer to L-closure "scan1" on the following calls. */
if(x->right) rest = bin2list(scan1, x->right, rest);
kv = getmem(scan1, &KVpair_d); /* allocation */
kv->key = x->key; kv->val = x->val;
a = getmem(scan1, &Alist_d); /* allocation */
a->kv = kv; a->cdr = rest;
rest = a;
if(x->left) rest = bin2list(scan1, x->left, rest);
return rest;

}

Fig. 2. Scanning GC roots with L-closures (nested functions)

high-level program may be translated into a C program shown in Fig. 1. Here,
getmem allocates a new object in heap, and a copying collector needs to be able
to scan all root variables such as x, rest, a and kv even when bin2list is being
recursively called.

In the proposed intermediate language, a program with copying GC can be
elegantly expressed as in Fig. 2. Allocator getmem may invoke the copying col-
lector with L-closure scan1 created by evaluating the nested function definition.
The copying collector can indirectly call scan1 which performs the movement
(copy) of objects using roots (x, rest, a and kv) and indirectly calls L-closure
scan0 in a nested manner.1 The actual entity of scan0 may be another instance
of scan1 in the caller. By repeatedly invoking L-closures until the bottom of the
stack is reached, all roots in the entire execution stack can be scanned.

In Fig. 2, bin2list’s variables (x, rest, a and kv) should have chances to get
(callee-save) registers. However, if we employ the typical Pascal-style implemen-

1 Alternatively, scan1 may return scan0 to eliminate tail calls.
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tation for L-closures, bin2list must perform memory operations (much slower
than register operations) to access these variables because scan1 also accesses
the values of these variables in the stack memory usually via a static chain. Note
that the same problem arises in translation techniques for stack-walking based
on “structure and pointer”[2, 3].

Our goal is to reduce these costs of maintaining L-closures (i.e., to enable
register allocation) by using a new implementation policy for L-closures. The
policy also reduces the costs of creating L-closures but accepts higher invocation
costs. Because most high-level services create L-closures very frequently but call
them infrequently (e.g., to scan roots in garbage collection), the total overhead
can be reduced significantly.

3 Design

Pascal and many modern programming languages other than C (such as Lisp,
Smalltalk, and ML) permits a function defined within another (nested or top-
level) function. We employ Pascal-style nested functions for our extended C
language. It can access the lexically-scoped variables in the creation-time envi-
ronment and a pointer to it can be used as a function pointer to indirectly call
the lexical closure (that is, a pair of the nested function and its environment). A
lexical closure is (logically) created every time the control arrives at the nested
function definition in the same way as local variable definitions. Since a closure is
created on the stack, unlike garbage-collected languages, the pointer to a closure
cannot be used after the exit of the block where the nested function is defined.

We propose a semantical separation of nested functions from ordinary top-
level functions, which enables a significant performance improvement by using
different calling sequences for nested functions. For this purpose, we introduce a
language concept called closures, which have almost the same roles as ordinary
(top-level) functions but which are not regarded as ordinary functions. We ex-
tend the language syntax with a keyword closure in the same way as keyword
lightweight in Fig. 2. A program which passes a closure pointer as an ordinary
function pointer will produce a type error, and vice versa.2

We also introduce a new language concept called L-closures other than
ordinary functions and other than closures. We extend the syntax with a keyword
lightweight as in Fig. 2. That is, there are two types of lexical closures, and
each type has the following goals and limitations:

Closures are intended to employ the Pascal-style implementation (i.e., static
chains). Closures do not keep interoperability with ordinary top-level func-
tions. The owner function of closures involves substantial costs of maintain-
ing closures. Closures have moderate creation/invocation costs. These costs
are the same as the corresponding costs for techniques based on “structure
and pointer.”

2 In practice, coercing function pointers into closure pointers may be permitted.
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L-closures are intended to employ the implementation policy for aggressively
minimizing costs of creating and maintaining L-closures by accepting higher
invocation costs. L-closures do not keep interoperability with ordinary top-
level functions (and closures). L-closures are callable only from within the
owner function and its descendants in the caller-callee relation. (e.g., not
callable from different threads)

We can choose an adequate type according to a situation. For example, L-closures
should be used to implement most of the high-level services discussed in Sect. 2
and Sect. 7, because those L-closures are rarely called and minimizing the cre-
ation/maintenance costs is desired.

4 Implementation Models

In this section, we propose recommended implementation models for closures
and L-closures.

We can implement a closure with a stack-allocated pair of pointers. The
pointer pair consists of the actual nested function and the environment (static
chain). The closure pointer can refer to the pair. When a caller indirectly calls a
closure, it already distinguish the closure pointer from ordinary function pointers
by compile-time looking at the type of the pointer, then it loads the static chain
(the second element of the pointer pair) into the static chain register and calls
the actual nested function (the first element of the pointer pair). Note that
we cannot use the pointer pair directly as a two-word closure pointer, since C
permits interoperability between the generic void * type and any other pointer
type.

To minimize costs of creating L-closures, the initialization of an L-closure is
delayed until it is actually called. This means that the creation cost of L-closures
is virtually zero (similar to carefully-implemented exception handlers.)

To minimize costs of maintaining L-closures, if a function f has a nested
function g of L-closure type and g accesses f ’s local variable (or parameter) x, x
uses two locations, namely a private location and a shared location, for giving the
private location a chance to get a (callee-save) register by reducing interference
with the existing optimizers and register allocators. Note that x does not use a
private location if the address of x is taken, or if a nested function accessing x
is not of L-closure type. In addition, if g has a nested function g2, g2’s access to
f ’s variable is accounted to be g’s access regardless of g2’s type.

The similar technique (but incomplete in terms of lazy pre/post-processing)
can be expressed in extended C with nested functions as in Fig. 3 for the func-
tion bin2list in Fig. 2. The function bin2list, which owns a nested function
scan1, introduces private variables (such as p_x and p_a) and uses the private
ones except for the function calls. Upon a function call, bin2list saves the pri-
vate values into the shared variables (such as x and a) as pre-processing. When
the control is returned, it restores the private values from the shared variables
as post-processing. This technique gives the private variable a chance to get a
register. However, this technique cannot omit pre/post-processing even if scan1
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Alist *bin2list(void (*scan0)(move_f), Bintree *x, Alist *rest){
Alist *a = 0; KVpair *kv = 0;
void scan1(move_f mv){ /* nested function */
x = mv(x); rest = mv(rest); /* scan roots */
a = mv(a); kv = mv(kv); /* scan roots */
scan0(mv); /* scan older roots */

} /* pass pointer to "scan1" on the following calls. */
/* private variables */
Bintree *p_x = x, Alist *p_rest = rest, *p_a = a; KVpair *p_kv = kv;
if(p_x->right){
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
Alist *_r = bin2list(scan1, p_x->right, p_rest);
p_x = x, p_rest = rest, p_a = a, p_kv = kv, /* post-processing */
p_rest = _r;

}
{
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
KVpair *_r = getmem(scan1, &KVpair_d); /* allocation */
p_x = x, p_rest = rest, p_a = a, p_kv = kv; /* post-processing */
p_kv = _r;

}
p_kv->key = p_x->key; p_kv->val = p_x->val;
{
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
Alist *_r = getmem(scan1, &Alist_d); /* allocation */
p_x = x, p_rest = rest, p_a = a, p_kv = kv; /* post-processing */
p_a = _r;

}
p_a->kv = p_kv; p_a->cdr = p_rest;
p_rest = p_a;
if(p_x->left){
x = p_x, rest = p_rest, a = p_a, kv = p_kv; /* pre-processing */
Alist *_r = bin2list(scan1, p_x->left, p_rest);
p_x = x, p_rest = rest, p_a = a, p_kv = kv, /* post-processing */
p_rest = _r;

}
return p_rest;

}

Fig. 3. Adding private variables and pre-processing and post-processing in C. This is
not the real code but shown for explanation purpose only

         bin2list
(owner of scan1)

gc

call L-call

returnreturnreturn

   scan1
(L-closure)

Pre-Processing

Post-Processing

getmem

call

return

Fig. 4. Usual pre-processing and post-processing
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          bin2list
(owner of scan1)

gc

call L-call

returnreturnreturn

   scan1
(L-closure)

Pre-Processing
(delayed)

Conditional
Post-Processing
(enabled by
 Pre-Processing)

getmem

call

return

Fig. 5. Delayed pre-processing and conditional post-processing performed only if the
L-closure is actually called

          bin2list
(owner of scan1)

gc

call L-call

   scan1
(L-closure)

Pre-Processing
(delayed)

Post-Processing
(enabled by
 Pre-Processing)

getmem

call

Quasi-Epilogue
(restoring
 callee-save
 registers)

Selector
(selecting
 branches)

Lc0,1

c1

Lc2,3

g3,
g4

g6,7,8

o3,4

o6,7,8,9,10

o11,12,13,14

Fig. 6. (Non-local) temporary return to the owner of the L-closure to be called for
correct pre-processing. Annotated numbers correspond to those in Fig 7

is not actually called. The control flow on pre-processing and post-processing at
the time when scan1 is being called by gc can be depicted as in Fig. 4.

To overcome this problem, we propose delayed pre-processing and conditional
post-processing as in Fig. 5. The pre-processing is delayed until the call to the
L-closure, and the conditional post-processing is dynamically enabled by pre-
processing. Pre-processing (indicated by filled squares) consists of the following
steps: (1) initializing all L-closures (function-pointers and static chains), (2)
copying private values into shared locations, and (3) enabling post-processing
(by changing return addresses). Performing pre-processing more than once3 is
avoided (i.e., pre-processing is also conditional) by checking if the conditional
post-processing is already enabled. Post-processing (indicated by filled diamonds)
simply copies values from shared locations into private locations.

3 In the case of recursive calls of an L-closure.
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bin2list: // owner of scan1
o0 : ...
o1 : call getmem with selector o3.
o2 : ...
o3 : /* selector for o1 */
o4 : if (L-closure to be called is in this frame) jump to pre-processing o6.
o5 : else jump to quasi-epilogue o18.
o6 : /* pre-processing for o1 */
o7 : copy values from private locations to shared locations.
o8 : initialize all L-closures (function-pointers and static chains).
o9 : save and modify o1’s return address to enable post-processing o11.
o10 : continue the L-call according to on-stack info.
o11 : /* post-processing for o1 */
o12 : save the return value.
o13 : copy values from shared locations to private locations.
o14 : continue the actual return.
o15 : ...
o16 : /* selector for modified return addresses */
o17 : continue the L-call according to on-stack info.
o18 : /* quasi-epilogue */
o19 : restore callee-save registers.
o20 : temp-return to the selector for the previous frame.

gc: // caller of scan1 (= scan)
g0 : ...
g1 : L-call scan with selector g3.
g2 : ...
g3 : /* selector for g1 */
g4 : jump to quasi-epilogue g6.
g5 : ...
g6 : /* quasi-epilogue */
g7 : restore callee-save registers.
g8 : temp-return to the selector for the previous frame.

L-call f :
Lc0 : save f and registers.
Lc1 : temp-return to the selector for the previous frame.
Lc2 : restore f and registers.
Lc3 : setup static chain for f and jump to f .

Fig. 7. pseudo code and calling steps

Since we give each private location a chance to get a callee-save register,
restoring callee-save registers (including the frame pointer but excluding the
stack pointer) before pre-processing is required for correct pre-processing. Such
restore can be performed by quasi-epilogues during non-local temporary return
to the owner function as in Fig. 6.

The pseudo code for Fig. 6 is shown in Fig. 7. A call to L-closure scan1 (L-
call to scan1 at g1 in Fig. 7) starts a non-local temporary return to the owner
function (Lc0, Lc1); firstly, it temporarily returns to the selector for the previous
frame (e.g., g3 for gc). Each selector (e.g., o3) selects a pre-processing branch
(e.g., o4, o6) if the current frame is the owner of the L-closure to be called;
otherwise, a quasi-epilogue branch (e.g., o18) is selected. Note that the quasi-
epilogue branch is always taken for the functions without L-closures (e.g., g3, g4



Lightweight Lexical Closures for Legitimate Execution Stack Access 9

and g6) to continue the non-local temporary return after restoring callee-save
registers (e.g., g7, g8).

The pre-processing (o6,o7,o8,o9) can be performed using the current frame
with restored callee-save registers. After pre-processing, the control is actually
transfered to the L-closure (o10, Lc2, Lc3).

Each temporary return finds a selector for the previous frame based on the
return address for the frame; after enabling post-processing by modifying return
address, it finds a selector which continues the L-call without performing further
pre-processing (o16, o17).

The solid arrows for L-call to scan1 in Fig. 6 corresponds to the following
steps in Fig. 7: g1, L-call (Lc0, Lc1), g1, selector (g3, g4), quasi-epilogue (g6, g7,
g8), . . ., o1, selector (o3, o4), pre-processing (o6, o7, o8, o9, o10), L-call(Lc2,
Lc3), and scan1.

Fig. 6 also illustrates that the enabled post-processing intercepts the ordinary
return. The solid arrows for the return to bin2list corresponds to the steps:
getmem, post-processing (o11, o12, o13, o14), and o1.

This implementation policy for L-closures effectively decouples L-closures
from their owner function, and makes the owner function’s variable access faster.

5 Implementation Based on GCC

This section presents our implementation based on the GNU C compiler[6]. We
enhanced GCC-3.2 to implement closures and L-closures for IA-32 and SPARC.

GCC uses an intermediate representation in Register Transfer Language
(RTL) to represent the code being generated, in a form closer to assembly lan-
guage than to C. An RTL representation is generated from the abstract syntax
tree, transformed by various passes (such as data flow analysis, optimization and
register allocation) and then converted into assembly code.

GCC has its own nested functions as an extention to C. They keep inter-
operability with ordinary top-level functions by using a technique called “tram-
polines”[7]. Trampolines are code fragments generated on the stack at runtime
to indirectly enter the nested function with a necessary environment. Therefore,
GCC’s approach involves more creation costs than closures.

Closures are implemented as was mentioned in Sect. 4. We use the stack-
allocated pointer pairs instead of GCC’s trampolines. A pair is initialized to
hold the address of the actual nested function and the static chain. To call a
closure, the caller first loads the static chain (the second element of the pointer
pair) into the static chain register4 and calls the actual nested function (the first
element of the pointer pair). All of these are implemented by extending only the
RTL generation scheme.

On the other hand, L-closures are implemented by (1) extending the RTL
generation scheme, (2) extending the assembly code generation scheme, and
(3) adding short runtime assembly code. In the implementation of L-closures,

4 In GCC, static chain rtx holds the RTL expression of the static chain register.
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Table 1. Implementation costs as patches to GCC

Closures L-Closures (+ Closures) (lines)

RTL RTL IA-32(i386) i386 asm SPARC(sparc) sparc asm

320 lines 973 212 105 181 148

we accept loss of implementation simplicity to obtain reusability (portability)
and efficiency. For reusability, our implementation employs the existing RTL
without modification or extension. With this approach, most existing optimizers
do not need modification or extension. We also minimize the extension on the
assembly code generation scheme; we rather extend the RTL generation scheme
if possible.

Table 1 summarizes the number of patch lines to implement closures and/or
L-closures as patches to GCC. For example, the implementation of L-closure on
IA-32 requires 973 line patch for RTL generation, 212 line patch for supporting
selectors and quasi-epilogues, and 105 line assembly runtime code. The RTL
generation part is shared with SPARC.

Since details of our implementation heavily depend on GCC internals, we
only outline our implementation. We simply generate selector code and quasi-
epilogue code at assembly-level by modifying the existing epilogue generation
routines. Note that we assume the use of a register window for SPARC at this
implementation. The pre/post-processing code is first generated as RTL code
and transformed by usual optimization and register allocation phases. For the
correct optimization in RTL, we employ a “virtual” control-flow edge for control
transfer performed by assembly-level code such as between selector code and pre-
processing code or between post-processing code and the original return point.

Our real implementation combines all selectors for each function into a single
selector with all possible branches. It also employs intra-function code sharing
among pre/post-processing code fragments for different call points and exploits
the runtime code fragments for common tasks in pre/post-processing and quasi-
epilogues. These improvements on code size produce complex code.

We do not have serious errors to use the unchanged GNU debugger to debug
the generated code with L-closures; for example, the back-tracing works well.
However, some execution status cannot be obtained correctly.

6 Performance Measurements

Without having nested functions, the speed of C programs will not change with
our extended compiler. To measure costs of creating and maintaining lexical
closures, we employed the following programs with nested functions for several
high-level services and compared them with the corresponding plain C programs:

BinTree (copying GC) creates a binary search tree with 200,000 nodes, with
a copying-collected heap.
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Table 2. Performance Measurements

S:SPARC Elapsed time in seconds (relative time to “no closures”)
P:Pentium no closures Trampoline Closure L-closure

BinTree S 0.180 (1.00) 0.240 (1.33) 0.226 (1.26) 0.190 (1.06)
copying GC P 0.150 (1.00) 0.165 (1.10) 0.167 (1.11) 0.150 (1.00)

Bin2List S 0.289 (1.00) 0.322 (1.14) 0.292 (1.01) 0.290 (1.00)
copying GC P 0.139 (1.00) 0.141 (1.01) 0.139 (1.00) 0.139 (1.00)

fib(36) S 0.56 (1.00) 2.76 (4.93) 0.81 (1.45) 0.60 (1.07)
check pointing P 0.170 (1.00) 0.468 (2.75) 0.260 (1.52) 0.170 (1.00)

fib(36) S 0.57 (1.00) 2.46 (4.31) 0.91 (1.60) 0.68 (1.19)
load balancing P 0.168 (1.00) 0.400 (2.38) 0.346 (2.06) 0.283 (1.68)

Pentomino S 3.16 (1.00) 5.75 (1.82) 4.66 (1.47) 3.44 (1.09)
load balancing P 1.80 (1.00) 2.10 (1.17) 2.06 (1.14) 1.92 (1.07)

nqueens(13) S 0.470 (1.00) 1.022 (2.17) 0.806 (1.71) 0.592 (1.26)
load balancing P 0.316 (1.00) 0.426 (1.35) 0.423 (1.34) 0.464 (1.47)

Bin2List (copying GC) converts a binary tree with 500,000 nodes into a lin-
ear list, with a copying-collected heap.

fib(36) (check-pointing) calculates the 36th Fibonacci number recursively,
with a capability of capturing stack state for check-pointing (see Fig. 8).

fib(36) (load balancing) calculates the 36th Fibonacci number, on a load-
balancing framework based on lazy partitioning of sequential programs[8].

Pentomino/nqueens(13) (load balancing) perform backtrack search for all
possible solutions to the Pentomino puzzle/the N-queens problem (N=13),
on the load-balancing framework.

Note that nested functions are never invoked in these measurements, that is,
garbage collection, check-pointing and task creation do not occur.

We measure the performance on 1.05GHz UltraSPARC-III and 3GHz Pen-
tium 4 using -O2 optimizers. Table 2 summarizes the results of performance
measurements, where “no closures” means the plain C program without the high-
level services (i.e., using no closures nor additional closure parameters for every
function call). “Trampolines” means the use of GCC’s conventional nested func-
tions. In some programs, especially those creating nested functions frequently,
the speed of the conventional nested functions is less than half. In contrast,
L-closures exhibits good performance. The relative times to the plain C are con-
siderably closer to 1.00.

However, there are two exceptional results in Table 2: fib(36) and N-queens
(load balancing) on Pentium 4. In these results, unimportant variables are al-
located to registers. Since Pentium 4 has only a few callee-save registers and
performs explicit save/restore of callee-save registers, the penalty of wrong al-
location is serious. Our technique using private locations increases the number
of allocation candidates, and increases not only good allocation opportunities
but also wrong allocation opportunities. On the other hand, our technique is
quite effective on SPARC which has more callee-save registers and performs lazy
save/restore with the register window.
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int cpfib(lightweight void (*save0)(), int n)
{
int pc = 0; /* pseudo program counter */
int s = 0;
lightweight void save1(){ /* L-closure */

save0(); /* save caller’s state */
save_pc(pc); /* save pc state */
save_int(n); /* save variable state */
save_int(s); /* save variable state */

}
if (n <= 2) return 1;
pc = 1; /* inc program counter before call */
s += cpfib(save1, n-1);
pc = 2; /* inc program counter before call */
s += cpfib(save1, n-2);
return s;

}

Fig. 8. Capturing state with L-closures

7 Discussion

7.1 Costs of L-closures

Like translation techniques based on “structure and pointer”[2, 3], closures and
L-closures need more code space for additional infrequently-invoked procedures
than annotation-based implementations. Grouping infrequently-used procedures
(plus code fragments in the case of L-closures) into a different code segment will
improve locality for the instruction cache.

To scan the execution stack with n frames by the program in Fig. 2, additional
n frames are needed for nested invocation of L-closures. If this is a problem,
standard techniques for eliminating tail calls can solve the problem. For its time
complexity, the number of temporary returns is O(n2). If this is a problem, we
should employ another L-closure policy which always converts unconverted part
of the entire stack into the pre-processed stack each time an L-closure is invoked,
where only the first conversion involves O(n) temporary returns in this case.

The results of performance measurements does not indicated that the cost of
additional closure parameters is serious. If we can find L-closures by using tags
like exception handlers, this additional cost can be eliminated.

7.2 High-Level Services: Related Work

There are at least four schemes for implementing high-level services on top of C
compilers: (1) Using direct stack manipulation in C neglecting legitimacy and
portability[1], (2) Providing special service routines and using the routines for the
translators into C[9], (3) Using elaborate translation techniques in the translators
into C[2, 3, 10–13], or (4) Extending C compilers and using the extended features
for the translators into the extended C[14, 15]. Our approach employs the fourth
implementation scheme.
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Capturing/Restoring Stack State. By using nested functions, stack state
can be captured without returning to the callers.5 Figure 8 shows a C function
with a nested function for capturing the stack state. The program uses a pseudo
program counter to record the current program point and saves all parame-
ters/local variables. This technique can be applied to check pointing, migration
and first-class continuations.

Porch[10] is a translator that transforms C programs into C programs sup-
porting portable checkpoints. They introduce source-to-source compilation tech-
niques for generating code to save and recover from such portable checkpoints
automatically. To save the stack state, the program repeatedly returns and le-
gitimately saves the parameters/local variables until the bottom of the stack is
reached. During restoring, this process is reversed.

Multi-Threads: Latency Hiding. We can implement high-level language
threads realized by a language system by using L-closures. To implement mul-
tiple threads, every function has its own nested function to continue its equiva-
lent computation and save the pointer to the nested function to be called later
to early execute the thread’s unprocessed computation (continuation). The ex-
plicit continuation is provided by the nested function ane explicitly passed like
a continuation-passing style.

Concert[11], OPA[12] use similar translation techniques to support suspen-
sion and resumption of multiple threads on a single processor with a single
execution stack (e.g., for latency hiding). They create a new child thread as an
ordinary function call and if the child thread completes its execution without
being blocked, the child thread simply returns the control to the parent thread.
But in case of the suspension of the child thread, the C functions for the child
thread legitimately saves its (live) parameters/local variables into heap-allocated
frames and simply returns the control to the parent thread. When a suspended
thread become runnable, it may legitimately restore necessary values from the
heap-allocated frames.

StackThreads/MP[14] allows the frame pointer to walk the execution stack
independently of the stack pointer. When the child thread is blocked, it can
transfer the control to an arbitrary ancestor thread without copying the stack
frames to heap. StackThreads/MP employs the unmodified GNU C compiler
and implements non-standard control flows by a combination of an assembly
language postprocessor and runtime libraries.

Load Balancing. To realize efficient dynamic load balancing by transferring
tasks among computing resources in fine-grained parallel computing such as
search problems, load balancing schemes which lazily create and extract a task
by splitting the present running task, such as Lazy Task Creation (LTC)[16], are
effective. In LTC, a newly created thread is directly and immediately executed

5 Restoring a previously-captured state is much easier and does not need nested func-
tions. For restoring, different versions of C functions can be used for efficiency.
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like a usual call while (the continuation of) the oldest thread in the computing
resource may be stolen by other idle computing resources. Usually, the idle com-
puting resource (thief ) randomly selects another computing resource (victim)
for stealing a task.

Compilers (translators) for multithreaded languages generate low-level code.
In the original LTC[16], assembly code is generated to directly manipulate the
execution stack. Both translators for Cilk[13] and OPA[12] generate C code.
Since it is illegal and not portable for C code to directly access the execution
stack, the Cilk/OPA translators generate two versions (fast/slow) of code; the
fast version code saves values of live variables in a heap-allocated frame upon
call (in the case of Cilk) or return (in the case of OPA) so that the slow version
code can continue the rest of computation based on the heap-allocated saved
continuation.

A message passing implementation[17] of LTC employs a polling method
where the victim detects a task request sent from the thief and returns a new task
created by splitting the present running task. This techniques enables OPA[12],
StackThreads/MP[14] and Lazy Threads[15] to support load balancing.

We can generate an LTC-based load balancing program where callers’ vari-
ables are accessed by using L-closures[8]. We can also perform backtracking by
using L-closures. Here “backtracking” means not only to backtrack to a point
where a new choice for the search can be made but also to undo the side effect
of the previous examined choices as in a sequential backtrack search.

8 Conclusions

This paper has proposed a new language concept called “L-closures” for le-
gitimate execution stack access. L-closures can be used to implement a wide
variety of high-level services and can be implemented efficiently in terms of cre-
ation/maintenance costs by accepting higher invocation costs. We implemented
L-closures based on GCC while reusing the existing optimizers.

The results of performance measurements exhibit quite low costs of creating
and maintaining L-closures. Because most high-level services create L-closures
very frequently but call them infrequently (e.g., to scan roots in garbage collec-
tion), the total overhead can be reduced significantly.

L-closures have roles similar to exception handlers, but they are sometimes
more useful since they allow the control to return to the calling point.

Future work includes the implementation of various high-level languages by
using our extended C language with L-closures as an intermediate language. We
are also developing a transformation-based implementation of L-closures, which
will be useful for the system where GCC-based compilers cannot be used.
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