
a revised version of PPL2004 paper (a manuscript for JSSST journal “Computer Software”), 2004.

A Type System and Compilation Techniques for Concurrent Objects

Masahiro Yasugi
Graduate School of Informatics, Kyoto University

Abstract

Autonomous concurrent objects can be regarded as
message receivers rather than labeled records by mes-
sage senders, each having object references. The sub-
type relation on reference types can be determined
by judging how various messages can be understood.
Based on this idea, this paper presents a type system
and compilation techniques for concurrent objects,
implementing efficient pattern matching of first class
messages, where the look-up can be performed as
direct indexing of a small table, and the table size
can be bounded by a number slightly more than the
number of injection tags which the message value
may have.

1 Introduction

In our computation/programming model[18, 17],
computation is performed by a collection of au-
tonomous, concurrently active software modules
called concurrent objects, and the interaction be-
tween concurrent objects is performed solely via mes-
sage passings. More than one concurrent object
can become active simultaneously, and more than
one message transmission may take place in parallel.
Each concurrent object has its own single thread of
control, and it may have its own memory, the con-
tents of which can be accessed only by itself. Theo-
retical foundations for concurrent objects have been
established by series of work in Actors[1], ABCM[9],
POOL[2], and calculi of asynchronous objects[6].

A concurrent object-oriented programming lan-
guage ABCL/1[18, 17] provides several types of mes-
sage passing forms, including past type (namely, only
request) and now type (namely, request followed by
reply) message passing forms. However, it lacks some
safety features (such as classes and static typing with
subtyping) for avoiding runtime type errors (e.g.,
message not understood).

To fix this problem, our programming language
ABCL/ST (ABCL/Statically Typed) was designed
as a descendant of ABCL/1. In this language, a
message is a first class datum (a value of a typed
expression), and an object (or a reply destination) is

the message receiver (target). Consequently, request
messages and reply messages are well integrated, and
types are well assigned to both past type and now
type message passing forms. A message receiver is
similar to a continuation, and the now type message
passing style is similar to the continuation passing
style. For an object to select its behavior accord-
ing to a request message, the first class request mes-
sage is typically a variant (a tagged value of disjoint
union types). The injection tag should not be a con-
structor for a particular disjoint union type to re-
alize subtyping for the object-oriented computation,
where objects of various classes may be receivers of
the same message. The duality between records and
variants, and the duality between values and con-
tinuations (instead of functions) make our subtype
relation somewhat simple. In addition, our type sys-
tem allows covariant overriding, where a subtype τ ′1
of a reference type τ1 (an object type) may replace
a reply message type τ2 (corresponding to a return
value type) in τ1 with its subtype τ ′2 (i.e., covariance
with τ ′1 ≤ τ1 and τ ′2 ≤ τ2). Note that our type sys-
tem is based on subtyping and does not employ type
variables and kinds.

ABCL/ST is basically machine independent, but
its performance was very important, since it was used
when I worked on a concurrent object-oriented lan-
guage system ABCL/EM-4[16] for a highly parallel
data-driven computer EM-4[8]. Increasing static en-
tities (e.g., classes and types) improves performance
of parallel execution especially in distributed mem-
ory environments.

In this paper, we propose compilation techniques
for implementing efficient pattern matching (by case
expressions) of first class messages, where the look-
up can be performed as direct indexing of a small ta-
ble: the size of the look-up table can be bounded by
a number slightly more than the number of injection
tags which the message value may have. Our tech-
niques support subtyping for object-oriented compu-
tation, but impose two restrictions on the type sys-
tem, namely (1) explicit specification of the subtype
relations (between disjoint-union types) with type
names and (2) restricted coercing. The first restric-
tion means that (multiple) inheritance of interface

1

types should be declared, although such naming can
be used for a recursive type definition.

For direct indexing of small tables, a variant is im-
plemented by a middle-level data structure including
an index for representing an injection tag. The range
of an index is a contiguous subset of non-negative
integer; it is from 0 to n for a non-negative integer
n. By fixing a particular disjoint-union type, an in-
jection tag may be mapped into several indices but
different injection tags are mapped into different in-
dices; these properties are sufficient to use a look-
up table for the disjoint-union type. By changing
disjoint-union types, however, different injection tags
may be mapped into a common index. Therefore, in-
dex adjustment is needed when disjoint-union types
are changed by direct cast or indirect cast . The direct
cast is directed by dataflow, including value pass-
ings, variable bindings, and variable accesses. By
“indirect cast”, we mean changing types of message
receivers (continuations) instead of changing types of
messages (values). To eliminate cast operations and
wasteful decomposition/recomposition operations as
much as possible, our type checking algorithm partly
employs type assignment in a top-down manner on
the syntax tree.

Explicit specification of the subtype relations leads
a problem: that is, the restriction increases the cases
in which the least upper bound of two types does not
exist, and it may increase compile-time type errors.
Our top-down type assignment is also useful to over-
come this problem by assigning a maximum type.

In some reflective computing systems[15, 14], mes-
sages are reified as first class messages for realizing
various communication patterns. In practice, we can
employ first class messages as useful entities directly
in our non-reflective language. For example, they
can be used for delegation.

The rest of this paper is organized as follows. For
preparation, we explain ABCL/ST and some exam-
ples in Section 2. Section 3 proposes our type sys-
tem including types, a subtype relation and typing
rules for a simplified ABCL/ST. Section 4 proposes
our compilation techniques. The related work is dis-
cussed in Section 5.

2 Programming Language
ABCL/ST

2.1 Class Definition

A class definition specifies behavior of objects of the
class. In ABCL/ST, a class definition is written in
the following form:

[class 〈class name〉 〈interface type〉

(〈formal parameter list for creation〉)
(state 〈variable declaration list〉)
〈expression〉].

The parts of (state ...) may be omitted. The
following is a simple example of class definition:

[class counter counter-o ((int c0))
(state (int (c c0)))
(script
(=> [:add i] [c := (+ c i)])
(==> [:get] !c))].

The above program fragment defines a class
named counter, which supports an interface type
counter-o (details of interface types will be de-
scribed later). c0 is a formal parameter of type int
for object creation (e.g., (new counter 0)) without
using constructors, and c is a state variable of type
int whose initial value is c0. An object of this
class accepts a message :add to add the value of the
argument to c, and also accepts a message :get to
reply the current value of c. The form ! returns a
value to the standard reply destination included in
:get message.

2.2 Message Passing

In ABCL/ST, an object could perform a message
passing, if it knows the target. The target is either
an object name or a reply destination. A reply des-
tination can be generated by the following now type
message passing.

Message passing is either past type or now type: a
past type message passing is written in the following
manner:

[〈target expression〉 <= 〈message expression〉].

For example, a past type message passing:

[obj <= 10]

sends a message 10 to the target that is the value
of variable obj. The message is asynchronously sent
and the sender object is not blocked.

A now type message passing is written in the fol-
lowing form:

[〈target expression〉 <==
[〈keyword〉 〈actual parameter list〉]].

For example, a now type message passing to an ob-
ject obj of counter class can be described as:

[obj <== [:get]].

2

The message is asynchronously sent and the sender
object is blocked until it receives a reply. The re-
ply value becomes the value of the message pass-
ing form itself. This message passing is similar to
that of sequential OO languages, but the commu-
nication of the reply is also performed via message
passing, whose target is the standard reply destina-
tion included in message :get. The standard reply
destination is supplied to the message by the now
type message passing.

The right hand side of now type message pass-
ing is not an 〈expression〉, while that of past type
message passing is an 〈expression〉. This is because,
in ABCL/ST, a message is always sent as a first
class datum, and the standard reply destination is a
part of the message, whereas, in ABCL/1, the stan-
dard reply destination is located on the outside of
the message. On past type message passing, the
value of 〈message expression〉 is directly sent as a
message. On the other hand, on now type mes-
sage passing, the form [:get] is transformed into
[:get 〈standard reply destination〉] before its send-
ing. The reply destination is a synchronizer for the
reply message and the continuation of the now type
message passing form.

2.3 Message Acceptance

Messages sent to an object are first stored in the
message queue of the object.

The wait-for form:

(wait-for
(=> 〈matching pattern〉 〈expression list〉)

...
(=> 〈matching pattern〉 〈expression list〉))

accepts the first message that satisfies a
〈matching pattern〉 from the message queue and
executes the corresponding 〈expression list〉. The
value of the last 〈expression〉 of 〈expression list〉 be-
comes the value of the wait-for form. Unmatched
messages remain in the message queue.

The script form:

(script
(=> 〈matching pattern〉 〈expression list〉)

...
(=> 〈matching pattern〉 〈expression list〉))

is almost the same as the wait-for form except that
the script form deletes unmatched messages from
its message queue and repeatedly waits for the next
message after execution of an 〈expression list〉.

In the wait-for and script forms, (==> [:get]
!c) is an abbreviation of:

(=> [:get std-rply-dst]
[std-rply-dst <= c]).

2.4 Interface of Object

The next example tells us how to specify the interface
type:

[class bias (obj real)
((real v) ((obj real) out))
(script
(=> inp [out <= (+ inp v)]))].

In this example, the interface type is (obj real),
which means that objects of this class accept mes-
sages of type real.

An object of class bias receives a message inp of
type real, adds the bias value v to it, then sends the
value to another object out of type (obj real).

As we can see in this example, in ABCL/ST, mes-
sages for an object are of only a single type, and an
interface type of an object is syntactically denoted
by:

(obj 〈type〉).

Here, 〈type〉 is the type of messages which the object
can accept.

In order to define interface type counter-o for the
previous counter example, the following type defini-
tion can be used:

(deftype
counter-o (obj obj-msg-counter-o)
obj-msg-counter-o (union [:add int]

[:get (@ int)])).

In this definition, counter-o is defined as a type of
objects whose messages are of a disjoint-union type
obj-msg-counter-o, which is defined as a union of
keyword types (a keyword type is a disjoint-union
type with a single injection tag) [:add int] and
[:get (@ int)]. The type of the standard reply
destination of :get message is (@ int), which means
that the reply destination accepts a value of type int.

2.5 Tuples and Tagged Values

In ABCL/ST, a tuple is constructed by
[〈expression〉· · ·〈expression〉] and a tagged value is
constructed by (〈keyword〉 〈expression〉).

There is a syntax sugar concerning tuples and
tagged values; for example, [:tag1 10 20 30] is an
abbreviation of (:tag1-*-*-* [10 20 30]) (# of *
denotes the arity of the tuple).

3

2.6 Types

The types in ABCL/ST include:

• Basic types such as int, real, bool,

• Tuple types such as [int real],

• Disjoint-union types, which include key-
word types such as [:tag1 int int int]
and disjoint-union names specified by type
definitions (described below),

• Class types, which are specified by class defini-
tions,

• Object types (interface types), such as (obj
[:tag1 int int int]), which indicates that
the object can accept messages of type [:tag1
int int int],

• Reply destination types, such as (@ int), which
indicates that the reply destination can receive
a reply message of type int.

2.7 Defining Subtype Relations

A union operation on disjoint-union types is used
to specify a subtype relation. Keyword types, such
as [:tag1 int int int], are used to attach tags
to values. A keyword type is a disjoint-union type
with a single injection tag. The subtype relation be-
tween disjoint-union types are specified by the fol-
lowing type definitions1:

(deftype weekday
(union [:mon] [:tue] [:wed]

[:thu] [:fri]))
(deftype weekend (union [:sat] [:sun]))
(deftype week (union weekday weekend)).

Here, week is a supertype of [:mon], weekday and
weekend.

The subtype relation on object types whose mes-
sages are of disjoint-union types is specified by the
following type definitions:

(deftype
counter-o (obj obj-msg-counter-o)
obj-msg-counter-o (union [:add int]

[:get (@ int)]))
(deftype
counter-with-reset-o

(obj obj-msg-counter-with-reset-o)
obj-msg-counter-with-reset-o

(union obj-msg-counter-o [:reset])).

1More mathematical treatment of these definitions is dis-
cussed in Section 3.

Here, obj-msg-counter-with-reset-o is a super-
type of obj-msg-counter-o, and
counter-with-reset-o is a subtype of counter-o.
There are abbreviations for object type definition; for
example, the above definition can be written as:

(deftype (obj-msg counter-o)
(union [:add int] [:get (@ int)]))

(deftype (obj-msg counter-with-reset-o)
(union (obj-msg counter-o) [:reset]))

or

[interface counter-o
[:add int] [:get (@ int)]]

[interface counter-with-reset-o
(obj-msg counter-o) [:reset]].

The following class definition gives a class whose
interface type is a subtype of that of counter-o:

[class counter-with-reset
counter-with-reset-o
((int c0))
(state (int (c c0)))
(script

(=> [:add i] [c := (+ c i)])
(=> [:reset] [c := c0])
(==> [:get] !c))].

The union operation on disjoint-union types is
also used to define recursive types such as lists and
trees:

(deftype list-of-int
(union [:nil] [:cons int list-of-int]))

(deftype int-tree
(union [:empty]

[:node int-tree int int-tree])).

Then we can write:

[x := [:cons 1 [:cons 2 [:nil]]]]

for a variable x of list-of-int type.

2.8 Examples

Figure 1 shows delegation. An object of class C2 just
forwards an unprocessed message M to an object of
C1-o type. In addition, our type system allows a
subtype C2-o of a reference type C1-o to replace a
reply message type C1-o for reply to :copy message
with its subtype C2-o (i.e., covariance).

4

[interface C1-o
[:add int] [:set int]
[:get (@ int)] [:copy (@ C1-o)]]

[interface C2-o
(obj-msg C1-o) [:reset] [:copy (@ C2-o)]]

[class C1 C1-o ((int x))
(script

(=> [:add i] [x := (+ x i)])
(=> [:set i] [x := i])
(==> [:get] !x)
(==> [:copy] !(new C1 x)))]

[class C2 C2-o ((C1-o c1))
(script

(=> [:reset] [c1 <= [:set 0]])
(==> [:copy]

!(new C2 [c1 <== [:copy]]))
(=> M [c1 <= M]))]

Figure 1: Delegation.

3 Type System for ABCL/ST

This section presents the type system for ABCL/ST,
including types, a subtype relation and typing rules
for a simplified ABCL/ST.

First, in Section 3.1, for preparation, we will
briefly examine two simple type systems to look at
the duality between labeled records and labeled vari-
ants, and the duality between values and continua-
tions. Then we will regard messages as values and
objects as continuations and present the reason why
we have chosen disjoint union types with labels to
generate a subtype relation.

Next, in Section 3.2, we will point out difficulties
on efficient implementation of a type system with
subtyping and present two restrictions for efficiency,
namely (1) explicit specification of the subtype rela-
tions with names and (2) restricted coercing. Then
types and the subtype relation are presented. Fi-
nally, in Section 3.3, the typing rules are presented
after defining a simplified ABCL/ST, followed by
some comments for our type checking algorithm.

3.1 Preliminaries

3.1.1 Two Simple Type Systems

Subtype relations are often discussed on labeled
record types. Other types with subtype relations are
disjoint-union types using labels as injection tags.

Let us look at a type system Tl(ordN), which is
given by the syntax:

τ ::= b | ¬τ | {l : τ, . . . , l : τ} | [l : τ, . . . , l : τ]
b ::= bool | int | real

where l ranges over a finite (N) set of label names,
Dom(ordN) is the set of label names. {l : τ, . . . , l : τ}
are labeled record types, whereas [l : τ, . . . , l : τ]
are disjoint-union types with injection labels. For
example, an expression of type {x : real, y : real}
denotes a record with x, y fields of type real, and an
expression of type [Z : int, R : real] denotes either
an int value with injection label Z or a real value
with injection label R.

Types of the form ¬τ are types for continuations.
A τ -accepting continuation (which accepts a τ type
value and executes the rest of the computation) has
a type ¬τ ; this notation appears in [5], where ¬τ is
defined as τ → ⊥. Intuitively, this means that the
function can be applied to the input value of type τ ,
but the result is never returned to the calling point.

Tl(ordN) does not have function types: τ1 → τ2;
instead, a continuation passing style (written as cps)
function can be represented as a continuation which
accepts a pair of the argument and a continuation
for the reply, for example:

¬{argument : τ1, reply-to : ¬τ2}.

Tl(ordN) does not have recursive types, but they are
automatically introduced later by a naming mecha-
nism which is required for efficient implementation.

Before giving the subtype relation, let us think
about embedding of the types of Tl(ordN) into the
simple type system without labels, namely Td(N),
which gives us a naive implementation scheme of sub-
typed languages. For this embedding, a one-to-one
morphism ordN : {li} → {1, 2, . . . , N} can be used.

Td(N) is given by the following syntax:

τ ::= > |⊥ | b | ¬τ | (τ1 × τ2 × · · · × τN) |
(τ1 + τ2 + · · ·+ τN)

b ::= bool | int | real

where (τ1 × τ2 × · · · × τN) is an N -tuple type, and
(τ1 + τ2 + · · · + τN) is a disjoint sum type with N
tags. The subtype relation of Td(N) is defined as:

`Td(N) ⊥ ≤ τ `Td(N) τ ≤ > `Td(N) b ≤ b

`Td(N) τ1 ≤ τ ′1 . . . `Td(N) τN ≤ τ ′N
`Td(N) (τ1 × · · · × τN) ≤ (τ ′1 × · · · × τ ′N)

`Td(N) τ1 ≤ τ ′1 . . . `Td(N) τN ≤ τ ′N
`Td(N) (τ1 + · · ·+ τN) ≤ (τ ′1 + · · ·+ τ ′N)

`Td(N) τ1 ≤ τ2

`Td(N) ¬τ2 ≤ ¬τ1.

The equality between types of Td(N) is the usual
structural equality between types, and the subtype

5

relation satisfies:

τ1 ≤ τ2 ∧ τ1 ≥ τ2 ⇐⇒ τ1 = τ2.

Now, embedding function ψordN
from types of

Tl(ordN) into types of Td(N) can be defined as:

ψordN
(b) = b

ψordN
(¬τ) = ¬ψordN

(τ)
ψordN

({l1 : τ11, . . . , ln : τ1n}) = (τ21 × · · · × τ2N)

where τ2j =
{

ψordN (τ1i) if j = ordN (li)
> otherwise

ψordN
([l1 : τ11, . . . , ln : τ1n]) = (τ21 + · · ·+ τ2N)

where τ2j =
{

ψordN
(τ1i) if j = ordN (li)

⊥ otherwise.

The subtype relation on types of Tl(ordN) is defined
by that of Td(N) in the following way:

`Tl(ordN) τ1 ≤ τ2
def≡ `Td(N) ψordN

(τ1) ≤ ψordN
(τ2).

This definition leads to the usual subtype relation.

3.1.2 Objects as Continuations

Labeled records are often used as objects, but here
we will present another representation of objects.
Labeled records have their dual representation of
disjoint-union types together with the duality be-
tween values and continuations:

{l1 : τ1, l2 : τ2, . . . , ln : τn}
↔ ¬[l1 : ¬τ1, l2 : ¬τ2, . . . , ln : ¬τn]

where a record type corresponds to a continuation
which accepts one of l1, . . . , ln and returns a reply
to the corresponding continuation of one of types
¬τ1, . . . ,¬τn.

Let us consider a record type whose l1-field is a
cps function. Then its dual representation would be:

{l1 : ¬{argument : τ1, reply-to : ¬τ2}}
↔ ¬[l1 : ¬¬{argument : τ1, reply-to : ¬τ2}].

The dual representation reveals a problem of “ob-
jects as records”; that is, there are two function-
style transactions to dispatch an object’s method:
the caller should (1) pass l1 and get ¬{argument :
τ1, reply-to : ¬τ2}, (2) pass the argument of type τ1

and get a reply of type τ2. This is not problematic
for sequential objects, but is for concurrent objects
where we would not like to incur double of message
traveling time (unless there are distributed (cached)
copies). We rather prefer a single transaction:

¬[l1 : {argument : τ1, reply-to : ¬τ2}]

where l1 is sent together with the argument.

For the reasons above, we choose continuations ac-
cepting variants for representation of objects. Re-
garding objects as continuations and regarding mes-
sages as values give us (1) an object-oriented view
where a message is sent to its target, and (2) a uni-
form view on request messages and reply messages,
namely both are value passing. Consequently, it is
more natural using disjoint-union types for messages
to incorporate the subtype relation on object types.

As we can see, a subtype relation has the dual
representation both on labeled records and labeled
variants. To avoid confusion with mixing these two,
we substitute tuples, denoted by (τ, τ, . . . , τ), for la-
beled records.

We should note that the type of objects pro-
posed above is based on the external view of objects,
namely, the viewpoint of the message sender to the
objects. We think that the record types are more ap-
propriate as types of objects from the internal view
of objects, namely, from the viewpoint of the imple-
mentor of objects; there, the object’s own properties
should not be concealed from the implementor and
may be manipulated for inheritance.

3.2 The Types and Subtype Relation
for ABCL/ST

3.2.1 Restrictions for Efficiency

Let N be the number of all injection tags (or labels)
which appear in the entire source program. Embed-
ding Tl(ordN) into Td(N) gives us an implementa-
tion scheme of subtyped languages, where the time-
complexity of a field selection or a case branch is O(1)
(just a direct table indexing operation), but space-
complexity of O(N) is required. That is, this naive
implementation uses unacceptablely large tables.

Another naive implementation may use an asso-
ciative list or a binary search algorithm; they would
reduce the space complexity to O(M) (where M be
the number of injection tags which the tested value
may have), but their time complexity would increase
to O(M) or O(log M). Hash search algorithms may
improve the time complexity to O(1), but its coeffi-
cient is still large.

We will propose a novel implementation where the
time complexity of a look-up is O(1) and its space
complexity is slightly more than O(M), where the
look-up is performed by direct indexing. The imple-
mentation and its precise space complexity are de-
scribed in Section 4.

For this complexity requirement, we use the re-
stricted type system where the subtype relations be-
tween disjoint-union types must be given explicitly
by the programmer. The system reduces overhead

6

by reflecting the programmer’s mind via naming.
The explicit declaration of a subtype relation is

performed with union operations on disjoint-union
types. The resulting type of a union operation is a
supertype of operands of the union operation:

(deftype weekday
(union [:mon] [:tue] [:wed]

[:thu] [:fri]))
(deftype weekend (union [:sat] [:sun]))
(deftype week (union weekday weekend)).

For example, [:mon] ≤ weekday, weekday ≤ week,
and weekend ≤ week hold. By the definitions above,
explicit disjoint-union names weekday, weekend, and
week are introduced to give their names to the cor-
responding disjoint-union types.

The type definition operator, union, is not the dis-
joint sum. For example, someone may want [:fri]
to be included also in weekend:

(deftype weekend
(union [:fri] [:sat] [:sun]))

where week has 7 elements rather than 8 ele-
ments, because the union operation on weekday and
weekend maps the two [:fri] elements into one.

Another restriction for the sake of high efficiency
is that: for high-speed type conversion at the im-
plementation level, the application of coercing rules,
such as the one between int and real, (i.e., infer-
ring the subtype relation without using a mapping
provided by the union operation) is restricted as is
described in the subsequent sections.

3.2.2 The Types and Subtype Relation

This section presents a type system Tr for ABCL/ST.
In the type system for ABCL/ST, obj τ and @ τ
corresponds to ¬τ in Tl(ordN) and Td(N). The set
of types (ranged over by τ) of Tr is given by the
syntax:

τ ::= > |⊥ | b | c |u | (τ, τ, . . . , τ) |obj τ |@ τ
b ::= int | real |bool
u ::= k τ | s
Fs = {s1 7→ {u11, . . . , u1m1}, . . . ,

sn 7→ {un1, . . . , unmn}}
Fc = {c1 7→ obj τ1, . . . , cn 7→ obj τn}.

The type equality is just the structural equality.
The keyword k ranges over injection tags. obj τ is

a type for objects which receive messages of type τ .
@ τ is the type for reply destinations each of which
receives a (single) message of type τ . c is a class
name. Fs is a function which maps a disjoint-union
name (s) into a set of disjoint-union types (either

disjoint-union name (s) or keyword type (k τ)). Fs

is specified by the programmer. One constraint on
Fs is that the following function Kset(Fs) must be
well-defined:

Dom(Kset(Fs)) = {uj},
Kset(Fs)(s) =

⋃

u′∈Fs(s)

Kset(Fs)(u′)

Kset(Fs)(k τ) = {k τ}
Kset(Fs) recursively expands disjoint-union names
until keyword types and finally provides the set of
keyword types, which are the original inputs to union
operation. For Kset(Fs) to be well-defined, the re-
cursive expansion must be terminated.

The subtype relation ≤u of Tr based on the ex-
plicit subtype relations between disjoint-union types
is defined as follows:

C ` τ ≤u τ C ` u ≤u s if u ∈ Fs(s)

C ` τ1 ≤u τ ′1 . . . C ` τn ≤u τ ′n
C ` (τ1, . . . , τn) ≤u (τ ′1, . . . , τ

′
n)

C ` τ1 ≤u τ2

C ` obj τ2 ≤u obj τ1

C ` τ1 ≤u τ2

C ` @ τ2 ≤u @ τ1

C ` τ1 ≤u τ2 C ` τ2 ≤u τ3

C ` τ1 ≤u τ3

where C = (Fs, Fc). Of course ≤u is a partial order
on types of Tr.

The subtype relation ≤ is defined by adding the
restricted coercing rules in the following way:

C ` τ1 ≤u τ2

C ` τ1 ≤ τ2

C ` τ1 ≤ τ2 C ` τ2 ≤ τ3

C ` τ1 ≤ τ3

C ` τ1 ≤ τ2

C ` k τ1 ≤ k τ2

C ` τ1 ≤ τ ′1 . . . C ` τn ≤ τ ′n
C ` (τ1, . . . , τn) ≤ (τ ′1, . . . , τ

′
n)

C ` ⊥ ≤ τ C ` τ ≤ >
C ` int ≤ real C ` int ≤ bool

C ` obj τ ≤ @ τ

C ` c ≤ obj τ if obj τ = Fc(c)

The rule of obj τ ≤ @ τ implies that an object name
can be used instead of a reply destination of the same
message type.

These coercing rules for ≤ can not appear on
proof tree nodes which are higher than the rules for
obj τ2 ≤u obj τ1, @ τ2 ≤u @ τ1. This is mainly for
efficiency; the details of the resulting efficient imple-
mentation are described in Section 4.2.

In addition to the constraint on Kset(Fs), Fs is
constrained to meet the following condition: for all

7

s ∈ Dom(Fs) and k, {τ | k τ ∈ Kset(Fs)(s)} is
either an empty set or a set which has a unique
maximal element in terms of ≤. Let us define
function maxKset as follows: maxKset(u, Fs, k) =
max{τ | k τ ∈ Kset(Fs)(u)}. Thus each s can be re-
garded as a disjoint union of the maximal elements
with the keywords as the injection tags. Of course,
these constraints would be checked by the compiler.

3.3 Typing for ABCL/ST

This section describes the typing for ABCL/ST. To
simplify its description, first, we introduce a simpli-
fied ABCL/ST in Section 3.3.1. Then we describe
the typing rules for the simplified ABCL/ST in Sec-
tion 3.3.2.

Our type checker (described in Section 3.3.3)
hardly fails on the subtype relation which forms not
a lattice but a partial order without using explicit
casts which can be found in C++ and Java, by us-
ing approximate minimum types and top-down type
assignment.

3.3.1 A Simplified Language for Typing Rule
Description

The simplified ABCL/ST for typing rule description
is given by the syntax:

e ::= cτ |x | (e, e, . . . , e) |#n e | k e |out e |
the τ e | e + e | e = e | l := e |
e ⇐ e | sync2 x e |@ x |
let τ x = e in e | (e; e; . . . ; e) |
case e of m ⇒ e or . . .or m ⇒ e |
wait-for m ⇒ e or . . .or m ⇒ e

l ::= x | (l, l, . . . , l) |#n l
m ::= cτ |x | (m, m, . . . , m) | k m
d ::= defclass c τ τ x state τ x = e do e

where τ ranges over the set of types, k ranges over
the set of injection tags, l ranges over the set of left
expressions for assignments, m ranges over the set of
pattern expressions for matching, e ranges over the
set of usual expressions, and d is a class definition.
#n e is n-th field selection of tuple expression e.

“defclass c τ τ0 x0 state τ1 x1 = e1, τ2 x2 =
e2 do eb” defines a class named c. c is also used as
a type. τ is an interface type, which is represented
by obj τm. τm is the type of messages which ob-
jects of class c can receive. τm can be referred to
by mymsgtype within the class definition. τ0 x0

is the parameter (and its type) for object creation.
τi xi = ei(i = 1, . . .) are declaration of state variables
and expressions for their initial values. The created
object executes eb. The class definition updates Fc

to be Fc(c) = τ .

“l := e” denotes an assignment. “et ⇐ em” sends
message em to the target et. “e1 = e2” is an equality
check. Note that, in the equality check, we do not
have to be worried about the lost labels via subtyp-
ing, since we employ disjoint-union types rather than
record types for the subtype relation; a supertype of
a disjoint-union type never lose the labels in contrast
to the behavior of record types.2

“sync2 x e” synchronizes a reply to x and
the local evaluation of e and makes their pair
as the result. This is used to implement now
type message passing; x is like a block name
in Common Lisp (i.e., (block 〈block name〉 ...
(return-from 〈block name〉 1) ...)), but instead
of using “return-from x,” “@ x” produces the
reply destination. The now type message pass-
ing form “[x2 <== [:msg 1]]” is implemented as
“#1 sync2 x1 (x2 ⇐ :msg (@ x1, 1))”, where the
reply destination produced by “@ x1” is passed to
object x2 as the first message argument and the reply
from x2 is extracted as the first element of the result-
ing pair of synchronization. By producing the reply
destination in the context of the request message con-
struction, the reply type can directly be obtained for
the type of the now type form.

3.3.2 The Typing Rules

The type judgment on expressions (e) is represented
by 4-tuple A,B `C e : τ . A is a type environment of
variable identifiers, B is an environment of the syn-
chronizing identifiers described above. τ is the as-
signed type. The typing rules are shown in Figure 2.
The first rule in Figure 2 is the so-called subsumption
rule, which permits an expression to have a type if
the expression has its subtype.

A1A2 and A1 + A2 which are used in the typing
rule description are defined as:

A = A1A2 ⇐⇒
Dom(A) = Dom(A1) ∪Dom(A2),

A(x) =
{

A1(x) if x ∈ Dom(A1)−Dom(A2)
A2(x) if x ∈ Dom(A2)

A = A1 + A2 ⇐⇒
Dom(A) = Dom(A1) ∪Dom(A2),
Dom(A1) ∩Dom(A2) = ∅,
A(x) =

{
A1(x) if x ∈ Dom(A1)
A2(x) if x ∈ Dom(A2).

The type judgment on left hand side expressions
(l) is represented by 3-tuple A `l l : τ . The typing
rules are in Figure 3.

2Despite of this good property, we still use the notion of
minimum types in our type checking algorithm for the equality
check expressions described in Section 3.3.3, because of the
presence of coercing rules.

8

A, B `C e : τ `C τ ≤ τ ′

A, B `C e : τ ′

A, B `C cτ : τ

A, B `C x : τ if x ∈ Dom(A), A(x) = τ

A, B `C ei : τi (∀i = 1, . . . , n)

A, B `C (e1, e2, . . . , en) : (τ1, τ2, . . . , τn)

A, B `C e : (τ1, . . . , τn, . . . , τn+m)

A, B `C #n e : τn

A, B `C e : τ

A, B `C k e : k τ

A, B `C e : k τ

A, B `C out e : τ

A, B `C e : τ

A, B `C the τ e : τ

A, B `C ei : τi(∀i = 1, 2) `C τ = num-lub(τ1, τ2)

A, B `C e1 + e2 : τ

A, B `C e1 : τ A, B `C e2 : τ `C τ 6= >
A, B `C e1 = e2 : bool

A `l l : τ A, B `C e : τ

A, B `C l := e : τ

A, B `C e1 : τ1 A, B `C e2 : τ2 `C τ2 = Msg(τ1)

A, B `C e1 ⇐ e2 : >
A, B{x 7→ {τ ′1, . . . , τ ′n}} `C e : τ2 `C τ ′i ≤ τ1 (∀i)

A, B `C sync2 x e : (τ1, τ2)

A, B `C @ x : @ τ if x ∈ Dom(B), τ ∈ B(x)

A, B `C e1 : τ1 A{x 7→ τ1}, B `C e2 : τ

A, B `C let τ1 x = e1 in e2 : τ

A, B `C ei : τi (∀i = 1, . . . , n− 1) A, B `C en : τ

A, B `C (e1; e2; . . . ; en) : τ

A, B `C ec : τ ′
Ai `C,m mi : τ ′

AAi, B `C ei : τ
(∀i)

A, B `C case ec of m1 ⇒ e1 or . . .or mn ⇒ en : τ

Ai `C,m mi : mymsgtype AAi, B `C ei : τ (∀i)
A, B `C wait-for m1 ⇒ e1 or . . .or mn ⇒ en : τ

Figure 2: Typing Rules for Expressions

A `l x : τ if τ ∈ Dom(A), A(x) = τ

A `l li : τi (∀i = 1, . . . , n)
A `l (l1, l2, . . . , ln) : (τ1, τ2, . . . , τn)

A `l l : (τ1, . . . , τn, . . . , τn+m)
A `l #n l : τn

Figure 3: Typing Rules for Left Hand Side Expres-
sions

`C τ ≤ τ ′ `C τ ′ 6= >
{} `C,m cτ : τ ′

{x 7→ τ} `C,m x : τ

Ai `C,m mi : τi (∀i = 1, . . . , n)
A1 + · · ·+ An `C,m (m1, . . . ,mn) : (τ1, . . . , τn)

A `C,m m : τ2 `C τ2 = maxKset(τ1, Fs, k)
A `C,m k m : τ1

Figure 4: Typing Rules for Pattern Expressions

The type judgment on pattern expressions (m) is
represented by 3-tuple A `C,m m : τ . The typing
rules are in Figure 4. In the rule for constant (the
first rule in Figure 4), cτ is compared with the value
of τ ’s supertype. In the rule for keyword (the fourth
rule in Figure 4), m is used to receive the value in the
tagged value; τ2 must be a supertype of all possible
types of the carried value.

There are a lot of solutions of type assignments
to a given (sub)expression which follow the typing
rules described in the previous section. To per-
form type checking for subtyped languages, usually,
a type checking algorithm, which assigns a minimum
type to each (sub)expression, would be employed for
sound and complete type checking. In the proposed
type system, however, such a minimum type does not
always exist even when a solution which satisfies the
typing rules exists. This is because of the restriction
of our type system which is required for efficiency;
the restriction increases the cases in which the least
upper bound of two types does not exist.

By all means, even under such a restriction, there
would be a complete algorithm which computes all
possible type assignments. However, ambiguity on
selecting a single type from the solutions still re-
mains. We would rather employ a type checking
algorithm which eliminates such ambiguity and pro-
vides a single type for each (sub)expression as a re-
sult, because this makes it easier for the user to un-
derstand what the result of the algorithm is, and for
the implementor to develop the optimizing compiler
using the provided type information.

Our type checking algorithm proposed in the fol-
lowing is sound but not complete with respect to
the typing rules in the previous section, but it is
not ambiguous for selecting a single type for each
(sub)expression. Furthermore, it hardly fails in spite
of the restriction on the type system, because it ba-
sically assigns maximum types rather than minimum
types. The minimum type approximation rules are
only applied for six kinds of subexpression, namely,

9

functions of function applications, targets of message
passings, the operands of numerical operations, the
both sides of equality checks, examined parts of case
expressions, and inner parts of reply-synchronization
expressions. For those programs that these approx-
imations succeed in isolating the minimum types,
the present type checking algorithm is complete; and
most programs written by the user seem to belong
to this category. However, to further prevent the
isolating processes from failing, the user can supply
a proper supertype for an expression explicitly by
‘the τ e’.

The single type assignment on e is represented by
4-tuple A,B `C,S e : τ . A is a type environment
of variable identifiers, B is an environment of the
synchronizing identifiers. τ is the assigned type. The
single type assignment rules are shown in Figure 5.

The minimum type approximation on e is repre-
sented by 3-tuple A `C,M e :: T . A is a type envi-
ronment of variable identifiers, T stands for approx-
imate minimum type. (Such approximation is not
required when the subtype relation form a lattice.)
T is a set of types, and represents another set of types
UB(T) = {τ | (∀τ ′ ∈ T).τ ′ ≤ τ}, where T is always
normalized not to contain obviously redundant ele-
ments to represent the same set of types as UB(T),
s.t. (∀τ ∈ T)(∀τ ′ ∈ T − {τ}).τ ′ 6≤ τ ; this normaliza-
tion is performed by maximal(). The minimum type
approximation rules are shown in Figure 6. Note
that some approximation rules do not see subexpres-
sions; such subexpressions are checked later by the
single type assignment rules.

3.3.3 Type Checking

To perform type checking, an elaborate unifica-
tion algorithm is not necessary but both inheriting
(namely, in a top-down manner on the syntax tree)
of types and synthesizing (namely, in a bottom-up
manner on the syntax tree) of approximate minimum
types are required. The type checking algorithm is
simple and almost identical to the single type as-
signment rules and the minimum type approxima-
tion rules. The type checking can be performed by
using 4 kinds of procedures (when using side effects
to assign types to (sub)expressions) on the syntax
tree:

TCb(A, e) = T synthesizes the approximate
minimum type (T) according to the mini-
mum type approximation rules.

TCt(A, e, σ) = (B, S) inherits a request type (σ)
and synthesizes an environment of the synchro-
nizing identifiers (B) and a substitution (S) ac-
cording to the single type assignment rules. If

not fail, it assigns S(σ) to e, where σ, S and
S(σ) are defined as follows:

σ ::= τ | size-unknown(n, σ, sv) |
key-unknown(σ, kv)

S = {sv1 7→ n1, . . . , svns 7→ nns ,
kv1 7→ k1, . . . , kvnk

7→ knk
}

S(size-unknown(n, σ, sv)) =

(>, . . . ,>,
n
ˇS(σ) >, . . . ,

m

>̌) if S(sv) = m

S(key-unknown(σ, kv)) =
k S(σ) if S(kv) = k

S(τ) = τ.

TCl(l) = τ synthesizes the type (τ) of a left hand
expression (l) according to the left hand side
typing rules. If not fail, it assigns τ to l.

TCm(m, τ) = A inherits a type (τ) and synthesizes
a type environment of variable identifiers (A) ac-
cording to typing rules for pattern expressions.
If not fail, it assigns τ to m.

3.4 Examples

Our type checker accepts the following form:

[x := (if b [:cons 1 x] [:nil])]

where x is of list-of-int type (defined in Sec-
tion 2.7). Our type checker first assigns the mini-
mum type list-of-int to the left hand side expres-
sion (x) then the right hand side expression inherits
the type. Type list-of-int is assigned to all of the
if-expression, [:cons 1 x], and [:nil]. then [int
list-of-int] is assigned to [1 x]. In contrast, if
we employ the usual minimum type assignment al-
gorithm as in C++ and Java, the above form will
cause a type error since we do not have the least up-
per bound of type [:cons int list-of-int] and
type [:nil].

Our type checker accepts the following now type
message passing form:

[Obj1 <== [:get]]

which is an abbreviation of

(part 1 (sync2 x [Obj1 <= [:get (@ x)]])).

Our type checker first assigns the minimum type
counter-o to Obj1, then the message expression in-
herits the type obj-msg-counter-o. Type (@ int)
is assigned to (@ x) and which makes B satisfy
B(x) = {int}. Finally, type int is assigned to [Obj1
<== [:get]].

10

`C τ ≤ τ ′

A, B `C,S cτ : τ ′

`C τ ≤ τ ′

A, B `C,S x : τ ′
if x ∈ Dom(A), A(x) = τ

A, B `C,S ei : τi (∀i = 1, . . . , n)

A, B `C,S (e1, e2, . . . , en) : (τ1, τ2, . . . , τn)

A, B `C,S e : (>, . . . ,>, τn,>, . . . ,>)

A, B `C,S #n e : τn

A, B `C,S e : τ2 `C τ2 = maxKset(τ1, Fs, k)

A, B `C,S k e : τ1

A, B `C,S e : k τ

A, B `C,S out e : τ

A, B `C,S e : τ `C τ ≤ τ ′

A, B `C,S the τ e : τ ′

A `C,M ei :: {τi} A, B `C,S ei : τi (∀i = 1, 2) `C τ = num-lub(τ1, τ2) `C τ ≤ τ ′

A, B `C,S e1 + e2 : τ ′

A `C,M ei :: Ti A, B `C,S ei : τ (∀i = 1, 2) `C {τ} = maximal(T1 ∪ T2) `C bool ≤ τ ′

A, B `C,S e1 = e2 : τ ′

A `l l : τ A, B `C,S e : τ `C τ ≤ τ ′

A, B `C,S l := e : τ ′

A `C,M e1 :: {τ1} A, B `C,S e1 : τ1 A, B `C,S e2 : τ2 `C τ2 = Msg(τ1)

A, B `C,S e1 ⇐ e2 : >
A `C,M e :: {τ2} A, B{x 7→ T1} `C,S e : τ2 `C τ ≤ τ1 (∀τ ∈ T1) `C τ2 ≤ τ ′2

A, B `C,S sync2 x e : (τ1, τ
′
2)

A, B `C,S @ x : @ τ if x ∈ Dom(B), τ ∈ B(x)

A, B `C,S e1 : τ1 A{x 7→ τ1}, B `C,S e2 : τ

A, B `C,S let τ1 x = e1 in e2 : τ

A, B `C,S ei : > (∀i = 1, . . . , n− 1) A, B `C,S en : τ

A, B `C,S (e1; e2; . . . ; en) : τ

A `C,M ec :: {τ ′} A, B `C,S ec : τ ′ Ai `C,m,S mi : τ ′ AAi, B `C,S ei : τ(∀i = 1, . . . , n)

A, B `C,S case ec of m1 ⇒ e1 or . . .or mn ⇒ en : τ

Ai `C,m,S mi : mymsgtype AAi, B `C,S ei : τ(∀i = 1, . . . , n)

A, B `C,S wait-for m1 ⇒ e1 or . . .or mn ⇒ en : τ

Figure 5: Single Type Assignment Rules for Expressions

11

A `C,M cτ :: {τ}
A `C,M x :: {τ} if x ∈ Dom(A), A(x) = τ

A `C,M ei :: Ti (∀i = 1, . . . , n)

A `C,M (e1, e2, . . . , en) :: {(τ ′1, τ ′2, . . . , τ ′n) | τ ′i ∈ Ti (i = 1, . . . , n)}
A `C,M e :: T `C T ′ = maximal({τn | (τ1, . . . , τn, . . . , τn+m) ∈ T})

A `C,M #n e :: T ′

where T = {(τ11, . . . , τ1n, . . . , τ1n+m), . . . , (τl1, . . . , τln, . . . , τln+m)}
A `C,M e :: T

A `C,M k e :: {k τ ′ | τ ′ ∈ T}
A `C,M e :: {k τ1, . . . , k τn}
A `C,M out e :: {τ1, . . . , τn}
A `C,M the τ e :: {τ}
A `C,M e1 :: {τ1} A `C,M e2 :: {τ2} `C τ = num-lub(τ1, τ2)

A `C,M e1 + e2 :: {τ}
A `C,M e1 = e2 :: {bool}

A `l l : τ

A `C,M l := e :: {τ}
A `C,M e1 ⇐ e2 :: {>}
A `C,M e :: {τ2} A, B{x 7→ T ′} `C,S e : τ2 `C T1 = maximal(T ′)

A `C,M sync2 x e :: {(τ ′1, τ2) | τ ′1 ∈ T1}
A{x 7→ τ1} `C,M e2 :: T

A `C,M let τ1 x = e1 in e2 :: T

A `C,M en :: T

A `C,M (e1; e2; . . . ; en) :: T

A `C,M ec :: {τ ′} Ai `C,m,S mi : τ ′ AAi `C,M ei :: Ti (∀i = 1, . . . , n) `C T = maximal(T1 ∪ · · · ∪ Tn)

A `C,M case ec of m1 ⇒ e1 or . . .or mn ⇒ en :: T

Ai `C,m,S mi : mymsgtype AAi `C,M ei :: Ti (∀i = 1, . . . , n) `C T = maximal(T1 ∪ · · · ∪ Tn)

A `C,M wait-for m1 ⇒ e1 or . . .or mn ⇒ en :: T

Figure 6: Minimum Type Approximation Rules for Expressions

12

4 Realizing Subtype Relation
with Small Overhead

The high-level datum has a mapping to the corre-
sponding middle-level data structure. In this section,
we propose a mapping which realizes the subtype re-
lation between high level types with small overhead.

We propose an implementation scheme of fast pat-
tern matching of variants, where the time complexity
of a look-up is O(1) and the look-up is performed as
a very fast operation: direct indexing operation of a
table, and the space complexity for the look-up table
is slightly more than O(M) (Let M be the number
of injection tags which may appear in the currently
examined variant), but the precise number is given
by function maxidx described later.

We assume the use of decision trees for effi-
cient implementation of pattern matching. A tree
is branched either based on injection tags or con-
stants. In the actual implementation, injection tags
are mapped into indices as is described later, and a
tree is branched based on indices.

4.1 Representation of Variants

First, we examine the following disjoint-union
types:

(deftype weekday
(union [:mon] [:tue] [:wed]

[:thu] [:fri]))
(deftype weekend (union [:sat] [:sun]))
(deftype week (union weekday weekend)).

The subtype relation among them can be represented
as a tree in Figure 7. In the figure, each type is a
subtype of its connecting upper ones; for example,
[:mon] is a type which has only one element [:mon],
and a subtype of weekday and week.

Let xw be a variable of type week, xwd be a vari-
able of type weekday, and xwe be a variable of type
weekend. xwd may be used for pattern matching in
the following expression:

(match xwd
(=> [:mon] ...)
(=> [:tue] ...)
(=> [:wed] ...)
(=> [:thu] ...)
(=> [:fri] ...)).

To realize the pattern matching, the value of xwd
must be distinguished for each keyword. We use an
index for this purpose. The range of an index is a
contiguous subset of non-negative integer; it is from 0
to n for a non-negative integer n. For xwd, the index

ranges from 0 to 4, and ‘0’ represents [:mon], ‘1’
represents [:tue] and so on. Similarly, for xwe, the
index ranges from 0 to 1, and ‘0’ represents [:sat],
‘1’ represents :sun. However, for xw, it would range
from 0 to 6, and ‘5’ would represent [:sat], which
is represented by ‘0’ in the case of xwe. Thus, we
can see a problem that the representation of [:sat]
differs between xw and xwe. To solve this problem,
when we perform an assignment:

[xw := xwe],

the index value must be shifted up (i.e., 0 7→ 5,
1 7→ 6). This can be performed by a quite simple
operation which just adds 5 to the index value. We
call this adding value (i.e., 5) index adjustment value.

This mechanism can be generalized: a disjoint-
union type is either a disjoint-union type symbol (de-
noted by s) or a keyword type (denoted by k τ).
The index range of a disjoint-union type symbol
s is constructed by concatenating all the ranges
of its union elements (used by union operation)
{u1, u2, . . . , un}(= Fs(s)), where the order of the
union elements must be consistent everywhere in the
language system; the order for union operation in
the source program specified by the programmer is
used by our current compiler. On the other hand, the
index range of a keyword type is just from 0 to 0. The
number of elements in an index range is given by the
following function which maps a disjoint-union type
to an integer:

maxidx (s) =
∑

u′∈Fs(s)

maxidx (u′)

maxidx (k τ) = 1.

This function gives the size of look-up table, which is
the space complexity of the look-up (pattern match-
ing) operation.

Now, the index adjustment value, when we use a
value of a disjoint union type (a source type) as a
value of its supertype (a target disjoint-union type),
is given by the function index-diff defined below,
which is a multi-valued function (i.e., returns mul-
tiple integers) from a pair of source/target disjoint-
union types. index-diff is derived by the following
rules:

index-diff (u, u) = 0.

Fs(st) = {u1, . . . , un}
1 ≤ j ≤ n

index-diff (us, uj) = i

index-diff (us, st) = i +
j−1∑

k=1

maxidx (uk)

index-diff returns multiple values only when the
source disjoint-union type appears more than once

13

week

weekday weekend

[:mon] [:tue] [:wed] [:thu] [:fri] [:sat] [:sun]

Figure 7: Subtype relation in Disjoint-Union Types.

during the decomposition of the target disjoint-union
type, where decomposition means recursive appli-
cation of Fs to disjoint-union type symbols started
from the target disjoint-union type. Any of the re-
turned multiple values can be used as the index ad-
justment value. The compiler may choose the small-
est one, because some machines have quick addition
instruction for small integers.

When the compiler generates a look-up table for
pattern matching (by a case expression) of disjoint-
union type data, the multiple integers returned by
index-diff are also used to determine the entry loca-
tions on the table for each pattern. (There might be
multiple table entries for a single pattern.)

So far, we have examined indices, but the value of
a disjoint-union type has a carried value other than
the index. We introduce pointers to hold the rest of
the value; i.e., a disjoint-union type datum is repre-
sented by a pair 〈pointer, index 〉. The indirection by
pointer is required for standardizing the representa-
tion, because the size of the carried data may vary
(in the above example, all the carried values are just
0-tuple, but it is not the general case).

4.2 Representation of Object Refer-
ences

In this section, we discuss the representation of ob-
ject types. An object reference, whose type has no
subtype relation, is just represented by a single ob-
ject address; but an object reference, whose type has
subtype relation with others, should be represented
in a more elaborate way.

The subtype relation among object types is a
reverse relation of their message types. For example,
the subtype relation among (obj [:mon]), (obj
[:tue]), (obj [:wed]), (obj [:thu]), (obj
[:fri]), (obj [:sat]), (obj [:sun]), (obj
weekday), (obj weekend), and (obj week) is
shown in Figure 8.

Let osun be a variable of type (obj [:sun]), owd
be a variable of type (obj weekday), owe be a vari-
able of type (obj weekend), and ow be a variable of

type (obj week). The object to which ow is bound
may perform the following pattern matching:

(wait-for
(=> [:mon] ...)
(=> [:tue] ...)
(=> [:wed] ...)
(=> [:thu] ...)
(=> [:fri] ...)
(=> [:sat] ...)
(=> [:sun] ...)).

Since the type of ow is a subtype of the type of owe,
the following assignment is permitted:

[owe := ow].

After this assignment, the object to which owe is
bound is equal to the one to which ow is bound, and
the following message send is also permitted:

[owe <= [:sun]].

The index of [:sun] is 1, because owe’s type is (obj
weekend) and its message type should be weekend.
However, the required index value is 6, because the
actual object receives the message as type week.

To solve this problem, the index adjustment is
necessary before the message send. Generally, this
conversion can be performed with a type conversion
(identity) function; the function may be denoted by
fn x => x : weekend -> week in ML.3 The func-
tion accompanies the object ID and is applied to the
message before an actual message send. Thus the
representation of a high-level object ID can be a pair
〈middle-level object ID, type conversion function〉.

Moreover, the type of owe is a subtype of the type
of osun; the following assignments and message send
are permitted:

[owe := ow]
[osun := owe]
[osun <= [:sun]]

3To put it more precisely, the actual target type of the
type conversion function may be a supertype of week. But we
suppose that the type is week in this section for simplicity.

14

(obj [:mon]) (obj [:tue]) · · · (obj [:fri]) (obj [:sat]) (obj [:sun])

(obj weekday) (obj weekend)

(obj week)

Figure 8: Subtype relation in Object Types.

In this case, the conversion should be performed
by a composition function of (1)id: [:sun] ->
weekend and (2) id :weekend -> week; (2) is a part
of owe. Thus, for [osun := owe], the type conver-
sion function for osun should be newly composed of
(1) and (2).

Let τs be the input type of the type conversion
function and τt be the output type of the type con-
version function. If the type conversion function is
represented by a usual function, such as code block
location, each message send will suffer an extra over-
head of function invocation. To avoid this overhead,
we would like the function to be represented by (a
set of) index adjustment value(s); this is possible
if τs ≤u τt is satisfied (not always possible if τs ≤
τt). Examples are [:sun] -> weekend, weekend
-> week, [[:sun] weekend] -> [week week], etc.
This representation also improves the speed of com-
position of functions significantly; for example, the
composition of (1)id: [:sun] -> weekend and (2)
id :weekend -> week can be performed just as an
integer addition of their index adjustment values.
For this reason of efficiency, as is described in Sec-
tion 3.2.2, we restrict the application of coercing
rules for ≤, such as the one between int and real.

Next, let us consider types (obj (obj week)) and
(obj (obj weekend)). (obj (obj weekend)) is a
subtype of (obj (obj week)). We need a new ad-
justment value to adjust index adjustment value; it
may be called “index adjustment value” adjustment
value. But we can see that all these adjustment val-
ues and index values are non-negative (small) inte-
gers.

4.3 Examples

The pattern matching in:

[interface counter-o
[:add int] [:get (@ int)]]

[class counter counter-o ((int c0))
(state (int (c c0)))
(script

(=> [:add i] [c := (+ c i)])

(==> [:get] !c))]

can be performed quickly, since each message for
counter-o is represented by a pair 〈pointer, index 〉
and the index is either 0 or 1 according to the injec-
tion tag.

Since an object of counter-with-reset class:

[interface counter-with-reset-o
(obj-msg counter-o) [:reset]]

[class counter-with-reset
counter-with-reset-o
((int c0))
(state (int (c c0)))
(script

(=> [:add i] [c := (+ c i)])
(=> [:reset] [c := c0])
(==> [:get] !c))]

can be used as counter-o type, it may receive mes-
sages for counter-o type. This pattern matching
can also be performed quickly. The injection tag
:reset will use 2 as index .

The pattern matching in:

[interface counter-o
[:add int] [:get (@ int)]]

[interface counter-with-reset-o
(obj-msg counter-o) [:reset]]

[interface counter-with-reverse-o
(obj-msg counter-o) [:reverse]]

[interface counter-with-r-r-o
(obj-msg counter-with-reset-o)
(obj-msg counter-with-reverse-o)]

[class counter-with-r-r counter-with-r-r-o
((int c0))
(state (int (c c0)))
(script

(=> [:add i] [c := (+ c i)])
(=> [:reset] [c := c0])
(=> [:reverse] [c := (- c)])
(==> [:get] !c))]

can also be performed quickly, but its set-
ting is somewhat complex. Messages for
counter-with-reset-o will use 0, 1 and 2 as index

15

for :add, :get and :reset, respectively. Messages
for counter-with-reverse-o will use 0, 1 and 2 as
index for :add, :get and :reverse, respectively.
So the pattern matching for counter-with-r-r-o
uses a table of size 6 and it uses 0 and 3 for
:add and uses 1 and 4 for :get. When an object
reference of counter-with-r-r-o type is used
as counter-with-reverse-o type, the “index
adjustment value” is added by 3.

The following form can be type checked in a tra-
ditional bottom-up manner:

[x := [:cons 1 [:cons 2 [:nil]]]]

where x is of list-of-int type (defined in Sec-
tion 2.7). But since both :cons and :nil will be
given 0 as the index at first, it leads wasteful de-
composition/recomposition operations to fix the in-
dex for :cons to 1 on the cast operation to type
list-of-int. In our type system, such wasteful
decomposition/recomposition operations are elimi-
nated because our type checking algorithm basically
employs type assignment in a top-down manner on
the syntax tree and :cons is given the final index 1
from the beginning.

In Figure 1, messages for C2-o will use 0, 1, 2, 3, 4
and 5 as index for :add, :set, :get, :copy, :reset
and :copy, respectively. When we see in detail, mes-
sages for C2-o will use 3 and 5 for [:copy (@ C1-o)]
and [:copy (@ C2-o)], respectively. Both messages
are matched by the method (=> [:copy r] [r <=
(new C2 [c1 <== [:copy]])]). Since the method
expects the reply destination of type (@ C2-o), a
cast operation is performed on the binding of the
pattern variable r. That is, the “index adjustment
value” adjustment value is added (by 0).

5 Related Work

TyCO[12] is typed concurrent objects based on
a name-passing calculus. There is also work for
ABCL/1[13]. The goal of TyCO is to establish theo-
retical foundations for/by concurrent objects rather
than to develop efficient implementation of concur-
rent objects.

Previous work[7, 4, 10] also uses variants for the
first class messages, but a first class message in the
previous work does not contain a continuation for a
returned value (a reply destination in ABCL). There-
fore, the previous work mainly focused on the type of
a return value which is dependent on the first class
message. Since a first class message in this paper
contains a reply destination and replies of different
types are sent to the corresponding reply destina-
tions, we do not have to use dependent types. While

match-functions are used in the previous work[4, 10],
our approach uses match-continuations which re-
turns nothing.

Polymorphic variants[3] in OCaml are another
mechanism to integrate disjoint union types with
polymorphism. Its type system employs structural
polymorphism with kinds, but does not include sub-
typing (although it can be added). Implementation
issues are also discussed in [3]. Each injection tag
is mapped into a 31-bit integer and uses a look-up
of O(log M) time complexity. Problematic collisions
are rare since a collision is a problem only within an
individual disjoint union type.

We do not think explicit specification of the sub-
type relations (between disjoint-union types) via
naming is a serious problem; the naming restriction
helps human understanding of programs. In C++
and Java, the same restriction exists via (multiple)
inheritance for named classes or interfaces. Actu-
ally, C++ employs similar compilation techniques to
ours for the subtype relation introduced by multiple
inheritance[11]. Since our type system may assign a
maximum type, overloading in C++ and Java can-
not be handled in our system.

6 Conclusion

This paper presents a type system and compilation
techniques for a concurrent object-oriented language
ABCL/ST. In this language, a message is a first class
datum (a value of a typed expression), and an object
is the message target.

The type system incorporates explicit specification
of subtype relations between disjoint-union types,
enabling an efficient implementation scheme of look-
up table. The look-up tables are used for pattern
matching of data with injection tags. The size of
the table can be bounded by a number slightly more
than the number of injection tags which the tested
value may have, and the look-up can be performed
as direct indexing of the table.

Acknowledgments

I would like to thank the anonymous reviewers for
their comments on improving the paper. I also thank
Professor Akinori Yonezawa for his supervision and
advice on this interesting research area.

References

[1] G. Agha. Actors : A Model of Concurrent
Computation in Distributed Systems. The MIT

16

Press, 1987.

[2] P. America and J. Rutten. A layered semantics
for a parallel object-oriented languages. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Proc. of REX/FOOL, Noordwijkerhout,
The Netherlands, volume 489 of Lecture Notes
in Computer Science, pages 91–123. Springer-
Verlag, May/June 1990.

[3] J. Garrigue. Programming with polymorphic
variants. In ML Workshop, Sept. 1998.

[4] J. Garrigue. Simple type inference for structural
polymorphism. In the 9th Workshop on Foun-
dations of Object-Oriented Languages FOOL9,
Jan. 2002.

[5] T. G. Griffin. A formulae-as-types notion of con-
trol. In Proceedings of 17th ACM Symposium on
Principles of Programming Languages, Sanfran-
cisco, pages 47–57, January 1990.

[6] K. Honda and M. Tokoro. An object calculus for
asynchronous communication. In P. America,
editor, Proc. of ECOOP’91, Geneva, Switzer-
land, volume 512 of Lecture Notes in Computer
Science, pages 133–147. Springer-Verlag, July
1991.

[7] S. Nishimura. Static typing for dynamic mes-
sages. In Proceedings of the 25th ACM Sympo-
sium on Principles of Programming Languages,
pages 266–278, New York, 1998. ACM Press.

[8] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama,
and T. Yuba. An architecture of a dataflow sin-
gle chip processor. In Proc. of the 16th Annual
International Symposium on Computer Archi-
tecture, pages 46–53, June 1989.

[9] E. Shibayama. An Object-Based Approach to
Modeling Concurrent Systems. PhD thesis, De-
partment of Information Science, The Univer-
sity of Tokyo, 1991.

[10] P. Shroff and S. Smith. Type inference for first-
class messages with match-functions. In the 11th
Workshop on Foundations of Object-Oriented
Languages FOOL11, Jan. 2002.

[11] B. Stroustrup. Multiple inheritance for C++. In
Proceedings of the European Unix Users Group
Conference’87, pages 189–207, May 1987.

[12] V. T. Vasconcelos. Typed concurrent objects.
In 8th Proceedings of European Conference on
Object-Oriented Programming (ECOOP), vol-
ume 821 of Lecture Notes in Computer Science,
pages 100–117. Springer-Verlag, July 1994.

[13] V. T. Vasconcelos. An operational semantics
and a type for ABCL/1 based on a calculus of
objects. In Object-Oriented Computing III, Lec-
ture Notes, Lake Biwa, Japan, 1995. Kindai Ka-
gaku Sha.

[14] K. Wakita. First class messages as first class
continuations. In Object Technologies for Ad-
vanced Software, First JSSST International
Symposium, volume 742 of Lecture Notes in
Computer Science, pages 442–459. Springer-
Verlag, 1993.

[15] T. Watanabe and A. Yonezawa. Reflection in
an object-oriented concurrent language. In Pro-
ceedings of ACM Conference on Object-Oriented
Programming Systems, Languages, and Applica-
tions (OOPSLA), pages 306–315, 1988.

[16] M. Yasugi. A concurrent object-oriented pro-
gramming language system for highly paral-
lel data-driven computers and its applications.
Technical Report 94-7e, Department of Infor-
mation Science, Faculty of Science, University
of Tokyo, Apr. 1994. (Doctoral Thesis, Mar.
1994).

[17] A. Yonezawa, editor. ABCL: An Object-
Oriented Concurrent System — Theory, Lan-
guage, Programming, Implementation and Ap-
plication. The MIT Press, 1990.

[18] A. Yonezawa, J.-P. Briot, and E. Shibayama.
Object-oriented concurrent programming in
ABCL/1. In Proc. of ACM Conference on OOP-
SLA, pages 258–268, 1986.

17

